Suppr超能文献

在低雷诺数下游泳的秀丽隐杆线虫的材料特性。

Material properties of Caenorhabditis elegans swimming at low Reynolds number.

机构信息

Department of Mechanical Engineering & Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Biophys J. 2010 Feb 17;98(4):617-26. doi: 10.1016/j.bpj.2009.11.010.

Abstract

Undulatory locomotion, as seen in the nematode Caenorhabditis elegans, is a common swimming gait of organisms in the low Reynolds number regime, where viscous forces are dominant. Although the nematode's motility is expected to be a strong function of its material properties, measurements remain scarce. Here, the swimming behavior of C. elegans is investigated in experiments and in a simple model. Experiments reveal that nematodes swim in a periodic fashion and generate traveling waves that decay from head to tail. The model is able to capture the experiments' main features and is used to estimate the nematode's Young's modulus E and tissue viscosity eta. For wild-type C. elegans, we find E approximately 3.77 kPa and eta approximately -860 Pa.s; values of eta for live C. elegans are negative because the tissue is generating rather than dissipating energy. Results show that material properties are sensitive to changes in muscle functional properties, and are useful quantitative tools with which to more accurately describe new and existing muscle mutants.

摘要

波动型运动,如线虫秀丽隐杆线虫中所见,是在低雷诺数区域中生物体的常见游动步态,其中粘性力占主导地位。尽管线虫的运动预计是其物质性质的强函数,但测量仍然很少。在这里,对线虫的游动行为进行了实验和简单模型的研究。实验表明,线虫以周期性的方式游动,并产生从头部到尾部衰减的行波。该模型能够捕捉实验的主要特征,并用于估计线虫的杨氏模量 E 和组织粘度 η。对于野生型秀丽隐杆线虫,我们发现 E 约为 3.77 kPa,η 约为-860 Pa·s;活线虫的 η 值为负,因为组织产生而不是耗散能量。结果表明,物质性质对肌肉功能性质的变化很敏感,并且是有用的定量工具,可以更准确地描述新的和现有的肌肉突变体。

相似文献

1
Material properties of Caenorhabditis elegans swimming at low Reynolds number.
Biophys J. 2010 Feb 17;98(4):617-26. doi: 10.1016/j.bpj.2009.11.010.
2
Undulatory locomotion of Caenorhabditis elegans on wet surfaces.
Biophys J. 2012 Jun 20;102(12):2772-81. doi: 10.1016/j.bpj.2012.05.012. Epub 2012 Jun 19.
3
Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans.
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20323-8. doi: 10.1073/pnas.1003016107. Epub 2010 Nov 3.
4
Biomechanical profiling of Caenorhabditis elegans motility.
Genetics. 2012 Jul;191(3):1015-21. doi: 10.1534/genetics.112.141176. Epub 2012 May 2.
5
A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans.
J R Soc Interface. 2015 Jan 6;12(102):20140963. doi: 10.1098/rsif.2014.0963.
6
Roll maneuvers are essential for active reorientation of in 3D media.
Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):E3616-E3625. doi: 10.1073/pnas.1706754115. Epub 2018 Apr 4.
7
Efficient nematode swimming in a shear thinning colloidal suspension.
Soft Matter. 2016 Feb 14;12(6):1892-7. doi: 10.1039/c5sm01824b. Epub 2015 Dec 21.
8
Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin.
Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):17504-9. doi: 10.1073/pnas.1108673108. Epub 2011 Oct 3.
10
Mechanosensation and mechanical load modulate the locomotory gait of swimming C. elegans.
J Exp Biol. 2007 Jul;210(Pt 13):2383-9. doi: 10.1242/jeb.004572.

引用本文的文献

1
Optimizing energetics of lateral undulatory locomotion: unveiling morphological adaptations in different environments.
J R Soc Interface. 2025 Apr;22(225):20240440. doi: 10.1098/rsif.2024.0440. Epub 2025 Apr 23.
2
Remodeling of extracellular matrix collagen IV by MIG-6/papilin regulates neuronal architecture.
Res Sq. 2025 Feb 14:rs.3.rs-5962240. doi: 10.21203/rs.3.rs-5962240/v1.
3
Robust undulatory locomotion through neuromechanical adjustments in a dissipative medium.
J R Soc Interface. 2025 Jan;22(222):20240688. doi: 10.1098/rsif.2024.0688. Epub 2025 Jan 29.
4
An integrative data-driven model simulating C. elegans brain, body and environment interactions.
Nat Comput Sci. 2024 Dec;4(12):978-990. doi: 10.1038/s43588-024-00738-w. Epub 2024 Dec 16.
6
Automated recognition and analysis of body bending behavior in C. elegans.
BMC Bioinformatics. 2023 Apr 28;24(1):175. doi: 10.1186/s12859-023-05307-y.
7
Automated phenotyping of embryos with a high-throughput-screening microfluidic platform.
Microsyst Nanoeng. 2020 Apr 6;6:24. doi: 10.1038/s41378-020-0132-8. eCollection 2020.
9
as a Model System for Duchenne Muscular Dystrophy.
Int J Mol Sci. 2021 May 5;22(9):4891. doi: 10.3390/ijms22094891.
10

本文引用的文献

1
The structure of the nervous system of the nematode Caenorhabditis elegans.
Philos Trans R Soc Lond B Biol Sci. 1986 Nov 12;314(1165):1-340. doi: 10.1098/rstb.1986.0056.
2
Genetic analysis of crawling and swimming locomotory patterns in C. elegans.
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20982-7. doi: 10.1073/pnas.0810359105. Epub 2008 Dec 12.
4
Shape transition and propulsive force of an elastic rod rotating in a viscous fluid.
Phys Rev Lett. 2008 Feb 22;100(7):078101. doi: 10.1103/PhysRevLett.100.078101. Epub 2008 Feb 19.
5
Limbless undulatory propulsion on land.
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3179-84. doi: 10.1073/pnas.0705442105. Epub 2008 Feb 28.
6
Analysis of nematode mechanics by piezoresistive displacement clamp.
Proc Natl Acad Sci U S A. 2007 Oct 30;104(44):17376-81. doi: 10.1073/pnas.0702138104. Epub 2007 Oct 25.
7
Mechanosensation and mechanical load modulate the locomotory gait of swimming C. elegans.
J Exp Biol. 2007 Jul;210(Pt 13):2383-9. doi: 10.1242/jeb.004572.
8
Simulations of optimized anguilliform swimming.
J Exp Biol. 2006 Dec;209(Pt 24):4841-57. doi: 10.1242/jeb.02526.
9
Matrix elasticity directs stem cell lineage specification.
Cell. 2006 Aug 25;126(4):677-89. doi: 10.1016/j.cell.2006.06.044.
10
Conservation rules, their breakdown, and optimality in Caenorhabditis sinusoidal locomotion.
J Theor Biol. 2006 Oct 7;242(3):652-69. doi: 10.1016/j.jtbi.2006.04.012. Epub 2006 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验