Suppr超能文献

线虫秀丽隐杆线虫步态适应的生物力学分析。

Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans.

机构信息

Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20323-8. doi: 10.1073/pnas.1003016107. Epub 2010 Nov 3.

Abstract

To navigate different environments, an animal must be able to adapt its locomotory gait to its physical surroundings. The nematode Caenorhabditis elegans, between swimming in water and crawling on surfaces, adapts its locomotory gait to surroundings that impose approximately 10,000-fold differences in mechanical resistance. Here we investigate this feat by studying the undulatory movements of C. elegans in Newtonian fluids spanning nearly five orders of magnitude in viscosity. In these fluids, the worm undulatory gait varies continuously with changes in external load: As load increases, both wavelength and frequency of undulation decrease. We also quantify the internal viscoelastic properties of the worm's body and their role in locomotory dynamics. We incorporate muscle activity, internal load, and external load into a biomechanical model of locomotion and show that (i) muscle power is nearly constant across changes in locomotory gait, and (ii) the onset of gait adaptation occurs as external load becomes comparable to internal load. During the swimming gait, which is evoked by small external loads, muscle power is primarily devoted to bending the worm's elastic body. During the crawling gait, evoked by large external loads, comparable muscle power is used to drive the external load and the elastic body. Our results suggest that C. elegans locomotory gait continuously adapts to external mechanical load in order to maintain propulsive thrust.

摘要

为了在不同环境中导航,动物必须能够根据其物理环境调整其运动步态。秀丽隐杆线虫(Caenorhabditis elegans)在水中游泳和在表面爬行之间,会根据其运动所面临的机械阻力相差约 10000 倍的环境来调整其运动步态。在这里,我们通过研究 C. elegans 在牛顿流体中的波动运动来研究这一壮举,这些牛顿流体的粘度跨越了近五个数量级。在这些流体中,蠕虫的波动步态随外部负载的变化而连续变化:随着负载的增加,波动的波长和频率都会降低。我们还量化了蠕虫身体的内部粘弹性特性及其在运动动力学中的作用。我们将肌肉活动、内部负载和外部负载纳入运动的生物力学模型,并表明:(i) 肌肉功率在运动步态变化时几乎保持不变,(ii) 当外部负载与内部负载相当时,运动步态的适应性开始出现。在由小外部负载引发的游泳步态中,肌肉功率主要用于弯曲蠕虫的弹性体。在由大外部负载引发的爬行步态中,相当的肌肉功率用于驱动外部负载和弹性体。我们的研究结果表明,C. elegans 的运动步态会持续适应外部机械负载,以保持推进力。

相似文献

1
Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans.
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20323-8. doi: 10.1073/pnas.1003016107. Epub 2010 Nov 3.
2
Gait-specific adaptation of locomotor activity in response to dietary restriction in Caenorhabditis elegans.
J Exp Biol. 2014 Jul 15;217(Pt 14):2480-8. doi: 10.1242/jeb.099382. Epub 2014 May 6.
3
Mechanosensation and mechanical load modulate the locomotory gait of swimming C. elegans.
J Exp Biol. 2007 Jul;210(Pt 13):2383-9. doi: 10.1242/jeb.004572.
4
Undulatory locomotion of Caenorhabditis elegans on wet surfaces.
Biophys J. 2012 Jun 20;102(12):2772-81. doi: 10.1016/j.bpj.2012.05.012. Epub 2012 Jun 19.
5
A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans.
J R Soc Interface. 2015 Jan 6;12(102):20140963. doi: 10.1098/rsif.2014.0963.
6
Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin.
Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):17504-9. doi: 10.1073/pnas.1108673108. Epub 2011 Oct 3.
7
Experiments and theory of undulatory locomotion in a simple structured medium.
J R Soc Interface. 2012 Aug 7;9(73):1809-23. doi: 10.1098/rsif.2011.0856. Epub 2012 Feb 8.
8
Locomotion control of Caenorhabditis elegans through confinement.
Biophys J. 2012 Jun 20;102(12):2791-8. doi: 10.1016/j.bpj.2012.04.051. Epub 2012 Jun 19.
9
Forward locomotion of the nematode C. elegans is achieved through modulation of a single gait.
HFSP J. 2009 Jun;3(3):186-93. doi: 10.2976/1.3082260. Epub 2009 Mar 26.
10
Direct measurements of drag forces in C. elegans crawling locomotion.
Biophys J. 2014 Oct 21;107(8):1980-1987. doi: 10.1016/j.bpj.2014.09.006.

引用本文的文献

1
Derivation of cardiomyocyte-propelled motile aggregates from stem cells.
bioRxiv. 2025 Jul 9:2025.07.09.663178. doi: 10.1101/2025.07.09.663178.
2
The roles of feedback loops in the Caenorhabditis elegans rhythmic forward locomotion.
PLoS Comput Biol. 2025 Jun 25;21(6):e1013171. doi: 10.1371/journal.pcbi.1013171. eCollection 2025 Jun.
4
Optimizing energetics of lateral undulatory locomotion: unveiling morphological adaptations in different environments.
J R Soc Interface. 2025 Apr;22(225):20240440. doi: 10.1098/rsif.2024.0440. Epub 2025 Apr 23.
5
Remodeling of extracellular matrix collagen IV by MIG-6/papilin regulates neuronal architecture.
Res Sq. 2025 Feb 14:rs.3.rs-5962240. doi: 10.21203/rs.3.rs-5962240/v1.
6
Robust undulatory locomotion through neuromechanical adjustments in a dissipative medium.
J R Soc Interface. 2025 Jan;22(222):20240688. doi: 10.1098/rsif.2024.0688. Epub 2025 Jan 29.
8
Optical mapping of ground reaction force dynamics in freely behaving larvae.
Elife. 2024 Jul 23;12:RP87746. doi: 10.7554/eLife.87746.
9
Geometric phase predicts locomotion performance in undulating living systems across scales.
Proc Natl Acad Sci U S A. 2024 Jun 11;121(24):e2320517121. doi: 10.1073/pnas.2320517121. Epub 2024 Jun 7.

本文引用的文献

1
The structure of the nervous system of the nematode Caenorhabditis elegans.
Philos Trans R Soc Lond B Biol Sci. 1986 Nov 12;314(1165):1-340. doi: 10.1098/rstb.1986.0056.
2
Material properties of Caenorhabditis elegans swimming at low Reynolds number.
Biophys J. 2010 Feb 17;98(4):617-26. doi: 10.1016/j.bpj.2009.11.010.
3
Forward locomotion of the nematode C. elegans is achieved through modulation of a single gait.
HFSP J. 2009 Jun;3(3):186-93. doi: 10.2976/1.3082260. Epub 2009 Mar 26.
4
Kinematics of the swimming of Spiroplasma.
Phys Rev Lett. 2009 May 29;102(21):218102. doi: 10.1103/PhysRevLett.102.218102. Epub 2009 May 28.
5
Genetic analysis of crawling and swimming locomotory patterns in C. elegans.
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20982-7. doi: 10.1073/pnas.0810359105. Epub 2008 Dec 12.
6
Dimensionality and dynamics in the behavior of C. elegans.
PLoS Comput Biol. 2008 Apr 25;4(4):e1000028. doi: 10.1371/journal.pcbi.1000028.
7
Limbless undulatory propulsion on land.
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3179-84. doi: 10.1073/pnas.0705442105. Epub 2008 Feb 28.
8
Analysis of nematode mechanics by piezoresistive displacement clamp.
Proc Natl Acad Sci U S A. 2007 Oct 30;104(44):17376-81. doi: 10.1073/pnas.0702138104. Epub 2007 Oct 25.
9
Mechanosensation and mechanical load modulate the locomotory gait of swimming C. elegans.
J Exp Biol. 2007 Jul;210(Pt 13):2383-9. doi: 10.1242/jeb.004572.
10
Automated imaging of C. elegans behavior.
Methods Mol Biol. 2006;351:241-51. doi: 10.1385/1-59745-151-7:241.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验