一种一致的肌肉激活策略是秀丽隐杆线虫爬行和游泳的基础。

A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans.

作者信息

Butler Victoria J, Branicky Robyn, Yemini Eviatar, Liewald Jana F, Gottschalk Alexander, Kerr Rex A, Chklovskii Dmitri B, Schafer William R

出版信息

J R Soc Interface. 2015 Jan 6;12(102):20140963. doi: 10.1098/rsif.2014.0963.

Abstract

Although undulatory swimming is observed in many organisms, the neuromuscular basis for undulatory movement patterns is not well understood. To better understand the basis for the generation of these movement patterns, we studied muscle activity in the nematode Caenorhabditis elegans. Caenorhabditis elegans exhibits a range of locomotion patterns: in low viscosity fluids the undulation has a wavelength longer than the body and propagates rapidly, while in high viscosity fluids or on agar media the undulatory waves are shorter and slower. Theoretical treatment of observed behaviour has suggested a large change in force-posture relationships at different viscosities, but analysis of bend propagation suggests that short-range proprioceptive feedback is used to control and generate body bends. How muscles could be activated in a way consistent with both these results is unclear. We therefore combined automated worm tracking with calcium imaging to determine muscle activation strategy in a variety of external substrates. Remarkably, we observed that across locomotion patterns spanning a threefold change in wavelength, peak muscle activation occurs approximately 45° (1/8th of a cycle) ahead of peak midline curvature. Although the location of peak force is predicted to vary widely, the activation pattern is consistent with required force in a model incorporating putative length- and velocity-dependence of muscle strength. Furthermore, a linear combination of local curvature and velocity can match the pattern of activation. This suggests that proprioception can enable the worm to swim effectively while working within the limitations of muscle biomechanics and neural control.

摘要

尽管在许多生物体中都观察到了波动式游泳,但波动运动模式的神经肌肉基础尚未得到很好的理解。为了更好地理解这些运动模式产生的基础,我们对线虫秀丽隐杆线虫的肌肉活动进行了研究。秀丽隐杆线虫表现出一系列的运动模式:在低粘度流体中,波动的波长比身体长且传播迅速,而在高粘度流体或琼脂培养基上,波动波则较短且较慢。对观察到的行为进行理论分析表明,在不同粘度下力与姿势的关系有很大变化,但对弯曲传播的分析表明,短程本体感受反馈被用于控制和产生身体弯曲。肌肉如何以与这两个结果都一致的方式被激活尚不清楚。因此,我们将自动线虫追踪与钙成像相结合,以确定在各种外部基质中的肌肉激活策略。值得注意的是,我们观察到,在波长变化三倍的各种运动模式中,肌肉激活峰值出现在中线曲率峰值之前约45°(一个周期的1/8)。尽管预计峰值力的位置会有很大变化,但在一个纳入了假定的肌肉力量长度和速度依赖性的模型中,激活模式与所需的力是一致的。此外,局部曲率和速度的线性组合可以匹配激活模式。这表明本体感受能够使线虫在肌肉生物力学和神经控制的限制范围内有效地游泳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e80e/4277086/8489c0ce811f/rsif20140963-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索