Department of Molecular Physiology, University of Virginia, Charlottesville, Virginia 22908, USA.
Cancer Res. 2010 Mar 1;70(5):1753-8. doi: 10.1158/0008-5472.CAN-09-3562. Epub 2010 Feb 16.
Substantial effort has been devoted to in vitro testing of candidate chemotherapeutic agents. In particular, the United States National Cancer Institute Developmental Therapeutics Program (NCI-DTP) Human Tumor Cell Line Screen has screened hundreds of thousands of compounds and extracts, for which data on more than 40,000 compounds tested on a panel of 60 cancer cell lines (NCI-60) are publically available. In tandem, gene expression profiling has brought about a sea change in our understanding of cancer biology, allowing discovery of biomarkers or signatures able to characterize, classify, and prognosticate clinical behavior of human tumors. Recent studies have used tumor profiling matched to clinical trial outcome data to derive gene expression models predicting therapeutic outcomes, though such efforts are costly, time-consuming, tumor type-specific, and not amenable to rare diseases. Furthermore, addition of new or established drugs to multidrug combinations in which such models are already available requires the entire model to be re-derived. Can the aforementioned in vitro testing platform, coupled to the universal language of genomics, be used to develop, a priori, gene expression models predictive of clinical outcomes? Recent advances, including the CO-eXpression ExtrapolatioN (COXEN) algorithm, suggest that development of these models may be possible and raise important implications for future trial design and drug discovery.
人们投入了大量精力来对候选化疗药物进行体外测试。特别是,美国国立癌症研究所药物开发治疗学计划(NCI-DTP)人类肿瘤细胞系筛选已经筛选了数十万种化合物和提取物,其中超过 40,000 种化合物在 60 种肿瘤细胞系(NCI-60)的面板上进行了测试,其数据是公开的。与此同时,基因表达谱分析极大地改变了我们对癌症生物学的认识,使我们能够发现能够描述、分类和预测人类肿瘤临床行为的生物标志物或特征。最近的研究使用与临床试验结果数据相匹配的肿瘤分析来得出预测治疗效果的基因表达模型,尽管这些努力代价高昂、耗时、肿瘤类型特异性,并且不适用于罕见疾病。此外,将新的或已确立的药物添加到已经有此类模型的多药物组合中,需要重新推导整个模型。上述体外测试平台,加上基因组学的通用语言,是否可以用于预先开发预测临床结果的基因表达模型?最近的进展,包括 CO-eXpression ExtrapolatioN(COXEN)算法,表明这些模型的开发可能是可行的,并为未来的试验设计和药物发现提出了重要的启示。