Suppr超能文献

利用随机森林预测体外药物敏感性。

Predicting in vitro drug sensitivity using Random Forests.

机构信息

Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

出版信息

Bioinformatics. 2011 Jan 15;27(2):220-4. doi: 10.1093/bioinformatics/btq628. Epub 2010 Dec 5.

Abstract

MOTIVATION

Panels of cell lines such as the NCI-60 have long been used to test drug candidates for their ability to inhibit proliferation. Predictive models of in vitro drug sensitivity have previously been constructed using gene expression signatures generated from gene expression microarrays. These statistical models allow the prediction of drug response for cell lines not in the original NCI-60. We improve on existing techniques by developing a novel multistep algorithm that builds regression models of drug response using Random Forest, an ensemble approach based on classification and regression trees (CART).

RESULTS

This method proved successful in predicting drug response for both a panel of 19 Breast Cancer and 7 Glioma cell lines, outperformed other methods based on differential gene expression, and has general utility for any application that seeks to relate gene expression data to a continuous output variable.

IMPLEMENTATION

Software was written in the R language and will be available together with associated gene expression and drug response data as the package ivDrug at http://r-forge.r-project.org.

摘要

动机

细胞系板,如 NCI-60 长期以来一直被用来测试候选药物抑制增殖的能力。先前已经使用从基因表达微阵列生成的基因表达特征来构建体外药物敏感性的预测模型。这些统计模型允许预测原始 NCI-60 中不存在的细胞系的药物反应。我们通过开发一种新的多步骤算法来改进现有技术,该算法使用随机森林(一种基于分类和回归树(CART)的集成方法)构建药物反应的回归模型。

结果

该方法成功地预测了 19 个乳腺癌和 7 个神经胶质瘤细胞系的药物反应,优于基于差异基因表达的其他方法,并且对于任何试图将基因表达数据与连续输出变量相关联的应用都具有普遍的用途。

实现

软件是用 R 语言编写的,并将与相关的基因表达和药物反应数据一起作为包 ivDrug 在 http://r-forge.r-project.org 上提供。

相似文献

1
Predicting in vitro drug sensitivity using Random Forests.利用随机森林预测体外药物敏感性。
Bioinformatics. 2011 Jan 15;27(2):220-4. doi: 10.1093/bioinformatics/btq628. Epub 2010 Dec 5.

引用本文的文献

7
Distributionally robust learning-to-rank under the Wasserstein metric.基于 Wasserstein 度量的分布鲁棒学习排序。
PLoS One. 2023 Mar 30;18(3):e0283574. doi: 10.1371/journal.pone.0283574. eCollection 2023.

本文引用的文献

8
Genomic signatures to guide the use of chemotherapeutics.指导化疗药物使用的基因组特征。
Nat Med. 2006 Nov;12(11):1294-300. doi: 10.1038/nm1491. Epub 2006 Oct 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验