Suppr超能文献

双心室起搏对不同步衰竭心脏线粒体蛋白质组的调节及线粒体功能的改善

Modulation of mitochondrial proteome and improved mitochondrial function by biventricular pacing of dyssynchronous failing hearts.

作者信息

Agnetti Giulio, Kaludercic Nina, Kane Lesley A, Elliott Steven T, Guo Yurong, Chakir Khalid, Samantapudi Daya, Paolocci Nazareno, Tomaselli Gordon F, Kass David A, Van Eyk Jennifer E

机构信息

Johns Hopkins Bayview Proteomics Center, Baltimore, MD 21224, USA.

出版信息

Circ Cardiovasc Genet. 2010 Feb;3(1):78-87. doi: 10.1161/CIRCGENETICS.109.871236. Epub 2009 Nov 17.

Abstract

BACKGROUND

Cardiac resynchronization therapy (CRT) improves chamber mechanoenergetics and morbidity and mortality of patients manifesting heart failure with ventricular dyssynchrony; however, little is known about the molecular changes underlying CRT benefits. We hypothesized that mitochondria may play an important role because of their involvement in energy production.

METHODS AND RESULTS

Mitochondria isolated from the left ventricle in a canine model of dyssynchronous or resynchronized (CRT) heart failure were analyzed by a classical, gel-based, proteomic approach. Two-dimensional gel electrophoresis revealed that 31 mitochondrial proteins where changed when controlling the false discovery rate at 30%. Key enzymes in anaplerotic pathways, such as pyruvate carboxylation and branched-chain amino acid oxidation, were increased. These concerted changes, along with others, suggested that CRT may increase the pool of Krebs cycle intermediates and fuel oxidative phosphorylation. Nearly 50% of observed changes pertained to subunits of the respiratory chain. ATP synthase-beta subunit of complex V was less degraded, and its phosphorylation modulated by CRT was associated with increased formation (2-fold, P=0.004) and specific activity (+20%, P=0.05) of the mature complex. The importance of these modifications was supported by coordinated changes in mitochondrial chaperones and proteases. CRT increased the mitochondrial respiratory control index with tightened coupling when isolated mitochondria were reexposed to substrates for both complex I (glutamate and malate) and complex II (succinate), an effect likely related to ATP synthase subunit modifications and complex quantity and activity.

CONCLUSIONS

CRT potently affects both the mitochondrial proteome and the performance associated with improved cardiac function.

摘要

背景

心脏再同步治疗(CRT)可改善心室不同步的心衰患者的心腔机械能量学、发病率和死亡率;然而,对于CRT获益背后的分子变化知之甚少。我们推测线粒体可能因其参与能量产生而发挥重要作用。

方法与结果

采用经典的基于凝胶的蛋白质组学方法,分析从不同步或再同步(CRT)心力衰竭犬模型的左心室分离出的线粒体。二维凝胶电泳显示,在错误发现率控制在30%时,有31种线粒体蛋白发生了变化。回补途径中的关键酶,如丙酮酸羧化和支链氨基酸氧化,有所增加。这些协同变化以及其他变化表明,CRT可能会增加三羧酸循环中间产物的储备并促进氧化磷酸化。观察到的变化中近50%与呼吸链亚基有关。复合物V的ATP合酶β亚基降解减少,其由CRT调节的磷酸化与成熟复合物的形成增加(2倍,P = 0.004)和比活性增加(+20%,P = 0.05)相关。线粒体伴侣蛋白和蛋白酶的协同变化支持了这些修饰的重要性。当分离的线粒体重新暴露于复合物I(谷氨酸和苹果酸)和复合物II(琥珀酸)的底物时,CRT通过加强偶联增加了线粒体呼吸控制指数,这种效应可能与ATP合酶亚基修饰以及复合物数量和活性有关。

结论

CRT对线粒体蛋白质组以及与改善心脏功能相关的性能都有显著影响。

相似文献

1
Modulation of mitochondrial proteome and improved mitochondrial function by biventricular pacing of dyssynchronous failing hearts.
Circ Cardiovasc Genet. 2010 Feb;3(1):78-87. doi: 10.1161/CIRCGENETICS.109.871236. Epub 2009 Nov 17.
2
Redox regulation of mitochondrial ATP synthase: implications for cardiac resynchronization therapy.
Circ Res. 2011 Sep 16;109(7):750-7. doi: 10.1161/CIRCRESAHA.111.246124. Epub 2011 Aug 4.
3
Posttranslational modifications and dysfunction of mitochondrial enzymes in human heart failure.
Am J Physiol Endocrinol Metab. 2016 Aug 1;311(2):E449-60. doi: 10.1152/ajpendo.00127.2016. Epub 2016 Jul 12.
4
Reversal of global apoptosis and regional stress kinase activation by cardiac resynchronization.
Circulation. 2008 Mar 18;117(11):1369-77. doi: 10.1161/CIRCULATIONAHA.107.706291. Epub 2008 Mar 3.
5
Cardiac resynchronization therapy corrects dyssynchrony-induced regional gene expression changes on a genomic level.
Circ Cardiovasc Genet. 2009 Aug;2(4):371-8. doi: 10.1161/CIRCGENETICS.108.832345. Epub 2009 May 15.
8
Abnormal cardiac and skeletal muscle mitochondrial function in pacing-induced cardiac failure.
Cardiovasc Res. 2001 Oct;52(1):103-10. doi: 10.1016/s0008-6363(01)00368-6.
9
Freshly isolated mitochondria from failing human hearts exhibit preserved respiratory function.
J Mol Cell Cardiol. 2014 Mar;68:98-105. doi: 10.1016/j.yjmcc.2013.12.029. Epub 2014 Jan 9.

引用本文的文献

2
Metabolic flexibility and reverse remodelling of the failing human heart.
Eur Heart J. 2025 Jul 1;46(25):2422-2433. doi: 10.1093/eurheartj/ehaf033.
3
Concepts of Cardiac Dyssynchrony and Dynamic Approach.
Diagnostics (Basel). 2024 Apr 30;14(9):937. doi: 10.3390/diagnostics14090937.
4
A Comprehensive Review of Cancer Drug-Induced Cardiotoxicity in Blood Cancer Patients: Current Perspectives and Therapeutic Strategies.
Curr Treat Options Oncol. 2024 Apr;25(4):465-495. doi: 10.1007/s11864-023-01175-z. Epub 2024 Feb 19.
5
Proteomics of the heart.
Physiol Rev. 2024 Jul 1;104(3):931-982. doi: 10.1152/physrev.00026.2023. Epub 2024 Feb 1.
6
Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential.
Nat Rev Cardiol. 2023 May;20(5):347-363. doi: 10.1038/s41569-022-00806-6. Epub 2023 Jan 4.
7
Cardio-Onco-Metabolism - Metabolic vulnerabilities in cancer and the heart.
J Mol Cell Cardiol. 2022 Oct;171:71-80. doi: 10.1016/j.yjmcc.2022.06.008. Epub 2022 Jun 28.
8
The Effect of Iron Deficiency on Cardiac Function and Structure in Heart Failure with Reduced Ejection Fraction.
Card Fail Rev. 2022 Mar 16;8:e06. doi: 10.15420/cfr.2021.26. eCollection 2022 Jan.
9
Cardio-Oncology: Understanding the Intersections Between Cardiac Metabolism and Cancer Biology.
JACC Basic Transl Sci. 2021 Jul 28;6(8):705-718. doi: 10.1016/j.jacbts.2021.05.008. eCollection 2021 Aug.

本文引用的文献

1
Cardiac resynchronization therapy corrects dyssynchrony-induced regional gene expression changes on a genomic level.
Circ Cardiovasc Genet. 2009 Aug;2(4):371-8. doi: 10.1161/CIRCGENETICS.108.832345. Epub 2009 May 15.
3
Reversal of global apoptosis and regional stress kinase activation by cardiac resynchronization.
Circulation. 2008 Mar 18;117(11):1369-77. doi: 10.1161/CIRCULATIONAHA.107.706291. Epub 2008 Mar 3.
4
Combined metabolomic and proteomic analysis of human atrial fibrillation.
J Am Coll Cardiol. 2008 Feb 5;51(5):585-94. doi: 10.1016/j.jacc.2007.09.055.
6
Physiology of biventricular pacing.
Curr Cardiol Rep. 2007 Sep;9(5):358-65. doi: 10.1007/BF02938362.
7
Mammalian ATPsynthase monomer versus dimer profiled by blue native PAGE and activity stain.
Electrophoresis. 2007 Sep;28(18):3178-85. doi: 10.1002/elps.200700066.
8
Proteomic technologies in the study of kinases: novel tools for the investigation of PKC in the heart.
Pharmacol Res. 2007 Jun;55(6):511-22. doi: 10.1016/j.phrs.2007.04.012. Epub 2007 May 3.
9
The failing heart--an engine out of fuel.
N Engl J Med. 2007 Mar 15;356(11):1140-51. doi: 10.1056/NEJMra063052.
10
Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets.
Physiology (Bethesda). 2007 Feb;22:56-64. doi: 10.1152/physiol.00033.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验