Suppr超能文献

受试者工作特征(ROC)曲线下面积的样本量估计上限

Bounding Sample Size Projections for the Area Under a ROC Curve.

作者信息

Blume Jeffrey D

机构信息

Center for Statistical Sciences, Brown University, Providence RI 02912, Email at

出版信息

J Stat Plan Inference. 2009 Mar 1;139(1):711-721. doi: 10.1016/j.jspi.2007.09.015.

Abstract

Studies of diagnostic tests are often designed with the goal of estimating the area under the receiver operating characteristic curve (AUC) because the AUC is a natural summary of a test's overall diagnostic ability. However, sample size projections dealing with AUCs are very sensitive to assumptions about the variance of the empirical AUC estimator, which dependens on two correlation parameters. While these correlation parameters can be estimated from available data, in practice it is hard to find reliable estimates before the study is conducted. Here we derive achievable bounds on the projected sample size that are free of these two correlation parameters. The lower bound is the smallest sample size that would yield the desired level of precision for some model, while the upper bound is the smallest sample size that would yield the desired level of precision for all models. These bounds are important reference points when designing a single or multi-arm study; they are the absolute minimum and maximum sample size that would ever be required. When the study design includes multiple readers or interpreters of the test, we derive bounds pertaining to the average reader AUC and the 'pooled' or overall AUC for the population of readers. These upper bounds for multireader studies are not too conservative when several readers are involved.

摘要

诊断试验的研究通常旨在估计受试者工作特征曲线(AUC)下的面积,因为AUC是对一项试验总体诊断能力的自然概括。然而,处理AUC的样本量预测对经验AUC估计值方差的假设非常敏感,而经验AUC估计值方差取决于两个相关参数。虽然这些相关参数可以从现有数据中估计出来,但在实践中,在研究进行之前很难找到可靠的估计值。在此,我们推导出了与这两个相关参数无关的预测样本量的可达到界限。下限是对于某些模型能产生所需精度水平的最小样本量,而上限是对于所有模型能产生所需精度水平的最小样本量。在设计单臂或多臂研究时,这些界限是重要的参考点;它们是所需的绝对最小和最大样本量。当研究设计包括多个测试的读取者或解释者时,我们推导出了与平均读取者AUC以及读取者群体的“合并”或总体AUC相关的界限。当涉及多个读取者时,多读取者研究的这些上限不会过于保守。

相似文献

1
Bounding Sample Size Projections for the Area Under a ROC Curve.
J Stat Plan Inference. 2009 Mar 1;139(1):711-721. doi: 10.1016/j.jspi.2007.09.015.
4
Sample size estimation for time-dependent receiver operating characteristic.
Stat Med. 2014 Mar 15;33(6):958-70. doi: 10.1002/sim.6005. Epub 2013 Oct 3.
6
Receiver operating characteristic curve analysis in diagnostic accuracy studies: A guide to interpreting the area under the curve value.
Turk J Emerg Med. 2023 Oct 3;23(4):195-198. doi: 10.4103/tjem.tjem_182_23. eCollection 2023 Oct-Dec.
8
The average receiver operating characteristic curve in multireader multicase imaging studies.
Br J Radiol. 2014 Aug;87(1040):20140016. doi: 10.1259/bjr.20140016. Epub 2014 Jun 2.
9
Single reader between-cases AUC estimator with nested data.
Stat Methods Med Res. 2022 Nov;31(11):2069-2086. doi: 10.1177/09622802221111539. Epub 2022 Jul 5.
10
Sample size determination for comparing accuracies between two diagnostic tests under a paired design.
Biom J. 2022 Apr;64(4):771-804. doi: 10.1002/bimj.202000036. Epub 2022 Jan 23.

引用本文的文献

2
Psychometric validation of the Physician Well-Being Index-Expanded (ePWBI) among physician educators in Hong Kong.
Ann Med. 2025 Dec;57(1):2532121. doi: 10.1080/07853890.2025.2532121. Epub 2025 Jul 16.
4
Hepatokine Profile in Adolescents with Polycystic Ovary Syndrome: A Case-Control Study.
J Clin Med. 2023 Sep 4;12(17):5744. doi: 10.3390/jcm12175744.
8
Sample size tables for computer-aided detection studies.
AJR Am J Roentgenol. 2011 Nov;197(5):W821-8. doi: 10.2214/AJR.11.6764.

本文引用的文献

1
The optimal ratio of cases to controls for estimating the classification accuracy of a biomarker.
Biostatistics. 2006 Jul;7(3):456-68. doi: 10.1093/biostatistics/kxj018. Epub 2006 Jan 20.
2
Decision processes in perception.
Psychol Rev. 1961 Sep;68:301-40.
3
Sample size calculations in studies of test accuracy.
Stat Methods Med Res. 1998 Dec;7(4):371-92. doi: 10.1177/096228029800700405.
5
Variance-component modeling in the analysis of receiver operating characteristic index estimates.
Acad Radiol. 1997 Aug;4(8):587-600. doi: 10.1016/s1076-6332(97)80210-3.
6
Sample size determination for diagnostic accuracy studies involving binormal ROC curve indices.
Stat Med. 1997 Jul 15;16(13):1529-42. doi: 10.1002/(sici)1097-0258(19970715)16:13<1529::aid-sim565>3.0.co;2-h.
7
Limitations to the robustness of binormal ROC curves: effects of model misspecification and location of decision thresholds on bias, precision, size and power.
Stat Med. 1997 Mar 30;16(6):669-79. doi: 10.1002/(sici)1097-0258(19970330)16:6<669::aid-sim489>3.0.co;2-q.
9
A comparison of parametric and nonparametric approaches to ROC analysis of quantitative diagnostic tests.
Med Decis Making. 1997 Jan-Mar;17(1):94-102. doi: 10.1177/0272989X9701700111.
10
Computing sample size for receiver operating characteristic studies.
Invest Radiol. 1994 Feb;29(2):238-43. doi: 10.1097/00004424-199402000-00020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验