Suppr超能文献

多阅片者多病例影像研究中的平均受试者工作特征曲线。

The average receiver operating characteristic curve in multireader multicase imaging studies.

作者信息

Chen W, Samuelson F W

机构信息

Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA.

出版信息

Br J Radiol. 2014 Aug;87(1040):20140016. doi: 10.1259/bjr.20140016. Epub 2014 Jun 2.

Abstract

OBJECTIVE

In multireader, multicase (MRMC) receiver operating characteristic (ROC) studies for evaluating medical imaging systems, the area under the ROC curve (AUC) is often used as a summary metric. Owing to the limitations of AUC, plotting the average ROC curve to accompany the rigorous statistical inference on AUC is recommended. The objective of this article is to investigate methods for generating the average ROC curve from ROC curves of individual readers.

METHODS

We present both a non-parametric method and a parametric method for averaging ROC curves that produce a ROC curve, the area under which is equal to the average AUC of individual readers (a property we call area preserving). We use hypothetical examples, simulated data and a real-world imaging data set to illustrate these methods and their properties.

RESULTS

We show that our proposed methods are area preserving. We also show that the method of averaging the ROC parameters, either the conventional bi-normal parameters (a, b) or the proper bi-normal parameters (c, da), is generally not area preserving and may produce a ROC curve that is intuitively not an average of multiple curves.

CONCLUSION

Our proposed methods are useful for making plots of average ROC curves in MRMC studies as a companion to the rigorous statistical inference on the AUC end point. The software implementing these methods is freely available from the authors.

ADVANCES IN KNOWLEDGE

METHODS for generating the average ROC curve in MRMC ROC studies are formally investigated. The area-preserving criterion we defined is useful to evaluate such methods.

摘要

目的

在用于评估医学成像系统的多读者、多病例(MRMC)接收器操作特性(ROC)研究中,ROC曲线下面积(AUC)常被用作汇总指标。由于AUC存在局限性,建议绘制平均ROC曲线以配合对AUC进行严格的统计推断。本文的目的是研究从个体读者的ROC曲线生成平均ROC曲线的方法。

方法

我们提出了一种非参数方法和一种参数方法来平均ROC曲线,从而生成一条ROC曲线,其下面积等于个体读者的平均AUC(我们称之为面积保持属性)。我们使用假设示例、模拟数据和一个真实世界的成像数据集来说明这些方法及其特性。

结果

我们表明我们提出的方法具有面积保持属性。我们还表明,平均ROC参数的方法,无论是传统的双正态参数(a, b)还是适当的双正态参数(c, da),通常都不具有面积保持属性,可能会产生一条直观上不是多条曲线平均值的ROC曲线。

结论

我们提出的方法有助于在MRMC研究中绘制平均ROC曲线,作为对AUC终点进行严格统计推断的补充。实现这些方法的软件可从作者处免费获取。

知识进展

对MRMC ROC研究中生成平均ROC曲线的方法进行了正式研究。我们定义的面积保持准则有助于评估此类方法。

相似文献

1
The average receiver operating characteristic curve in multireader multicase imaging studies.
Br J Radiol. 2014 Aug;87(1040):20140016. doi: 10.1259/bjr.20140016. Epub 2014 Jun 2.
2
Multireader multicase variance analysis for binary data.
J Opt Soc Am A Opt Image Sci Vis. 2007 Dec;24(12):B70-80. doi: 10.1364/josaa.24.000b70.
3
Hypothesis testing in noninferiority and equivalence MRMC ROC studies.
Acad Radiol. 2012 Sep;19(9):1158-65. doi: 10.1016/j.acra.2012.04.011. Epub 2012 Jun 19.
4
Reliable and computationally efficient maximum-likelihood estimation of "proper" binormal ROC curves.
Acad Radiol. 2007 Jul;14(7):814-29. doi: 10.1016/j.acra.2007.03.012.
6
An analytic expression for the binormal partial area under the ROC curve.
Acad Radiol. 2012 Dec;19(12):1491-8. doi: 10.1016/j.acra.2012.09.009.
8
Verification of modified receiver-operating characteristic software using simulated rating data.
Radiol Phys Technol. 2018 Dec;11(4):406-414. doi: 10.1007/s12194-018-0479-9. Epub 2018 Sep 22.
9
Statistical methods for MRMC ROC studies.
Acad Radiol. 2012 Dec;19(12):1499-507. doi: 10.1016/j.acra.2012.09.005.
10
Estimating the Area Under ROC Curve When the Fitted Binormal Curves Demonstrate Improper Shape.
Acad Radiol. 2017 Feb;24(2):209-219. doi: 10.1016/j.acra.2016.09.020. Epub 2016 Nov 21.

引用本文的文献

1
Prediction Models for Retinopathy of Prematurity Using Nonimaging Machine Learning Approaches: A Regional Multicenter Study.
Ophthalmol Sci. 2025 Jan 18;5(4):100715. doi: 10.1016/j.xops.2025.100715. eCollection 2025 Jul-Aug.
5
Early signs of cancer present in the fine detail of mammograms.
PLoS One. 2023 Apr 5;18(4):e0282872. doi: 10.1371/journal.pone.0282872. eCollection 2023.
7
Improving breast cancer diagnosis by incorporating raw ultrasound parameters into machine learning.
Mach Learn Sci Technol. 2022 Dec 1;3(4):045013. doi: 10.1088/2632-2153/ac9bcc. Epub 2022 Nov 7.

本文引用的文献

1
Inference based on diagnostic measures from studies of new imaging devices.
Acad Radiol. 2013 Jul;20(7):816-24. doi: 10.1016/j.acra.2013.03.002. Epub 2013 Apr 30.
3
Evaluating imaging and computer-aided detection and diagnosis devices at the FDA.
Acad Radiol. 2012 Apr;19(4):463-77. doi: 10.1016/j.acra.2011.12.016. Epub 2012 Feb 3.
4
Assessment of medical imaging systems and computer aids: a tutorial review.
Acad Radiol. 2007 Jun;14(6):723-48. doi: 10.1016/j.acra.2007.03.001.
5
Assessment of medical imaging and computer-assist systems: lessons from recent experience.
Acad Radiol. 2002 Nov;9(11):1264-77. doi: 10.1016/s1076-6332(03)80560-3.
8
"Proper" Binormal ROC Curves: Theory and Maximum-Likelihood Estimation.
J Math Psychol. 1999 Mar;43(1):1-33. doi: 10.1006/jmps.1998.1218.
9
Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data.
Stat Med. 1998 May 15;17(9):1033-53. doi: 10.1002/(sici)1097-0258(19980515)17:9<1033::aid-sim784>3.0.co;2-z.
10
A receiver operating characteristic partial area index for highly sensitive diagnostic tests.
Radiology. 1996 Dec;201(3):745-50. doi: 10.1148/radiology.201.3.8939225.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验