McClendon Christopher L, Friedland Gregory, Mobley David L, Amirkhani Homeira, Jacobson Matthew P
University of California San Francisco, Graduate Group in Biophysics and Department of Pharmaceutical Chemistry.
J Chem Theory Comput. 2009 Sep 8;5(9):2486-2502. doi: 10.1021/ct9001812.
Allostery describes altered protein function at one site due to a perturbation at another site. One mechanism of allostery involves correlated motions, which can occur even in the absence of substantial conformational change. We present a novel method, "MutInf", to identify statistically significant correlated motions from equilibrium molecular dynamics simulations. Our approach analyzes both backbone and sidechain motions using internal coordinates to account for the gear-like twists that can take place even in the absence of the large conformational changes typical of traditional allosteric proteins. We quantify correlated motions using a mutual information metric, which we extend to incorporate data from multiple short simulations and to filter out correlations that are not statistically significant. Applying our approach to uncover mechanisms of cooperative small molecule binding in human interleukin-2, we identify clusters of correlated residues from 50 ns of molecular dynamics simulations. Interestingly, two of the clusters with the strongest correlations highlight known cooperative small-molecule binding sites and show substantial correlations between these sites. These cooperative binding sites on interleukin-2 are correlated not only through the hydrophobic core of the protein but also through a dynamic polar network of hydrogen bonding and electrostatic interactions. Since this approach identifies correlated conformations in an unbiased, statistically robust manner, it should be a useful tool for finding novel or "orphan" allosteric sites in proteins of biological and therapeutic importance.
别构效应描述了由于另一个位点的扰动而导致一个位点蛋白质功能的改变。别构效应的一种机制涉及相关运动,即使在没有显著构象变化的情况下也可能发生。我们提出了一种新方法“MutInf”,用于从平衡分子动力学模拟中识别具有统计学意义的相关运动。我们的方法使用内部坐标分析主链和侧链运动,以考虑即使在没有传统别构蛋白典型的大构象变化的情况下也可能发生的齿轮状扭曲。我们使用互信息度量来量化相关运动,我们对其进行扩展以纳入来自多个短模拟的数据,并过滤掉无统计学意义的相关性。将我们的方法应用于揭示人类白细胞介素-2中协同小分子结合的机制,我们从50纳秒的分子动力学模拟中识别出相关残基簇。有趣的是,两个相关性最强的簇突出了已知的协同小分子结合位点,并显示出这些位点之间存在显著相关性。白细胞介素-2上的这些协同结合位点不仅通过蛋白质的疏水核心相关联,还通过氢键和静电相互作用的动态极性网络相关联。由于这种方法以无偏、统计稳健的方式识别相关构象,它应该是在具有生物学和治疗重要性的蛋白质中寻找新的或“孤儿”别构位点的有用工具。