Guo Amy B, Akpinaroglu Deniz, Kelly Mark J S, Kortemme Tanja
The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco; San Francisco, CA 94143, USA.
Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco; San Francisco, CA 94143, USA.
bioRxiv. 2024 Jul 19:2024.07.17.603962. doi: 10.1101/2024.07.17.603962.
Deep learning has greatly advanced design of highly stable static protein structures, but the controlled conformational dynamics that are hallmarks of natural switch-like signaling proteins have remained inaccessible to design. Here, we describe a general deep-learning-guided approach for design of dynamic changes between intra-domain geometries of proteins, similar to switch mechanisms prevalent in nature, with atom-level precision. We solve 4 structures validating the designed conformations, show microsecond transitions between them, and demonstrate that the conformational landscape can be modulated by orthosteric ligands and allosteric mutations. Physics-based simulations are in remarkable agreement with deep-learning predictions and experimental data, reveal distinct state-dependent residue interaction networks, and predict mutations that tune the designed conformational landscape. Our approach demonstrates that new modes of motion can now be realized through design and provides a framework for constructing biology-inspired, tunable and controllable protein signaling behavior .
深度学习极大地推动了高度稳定的静态蛋白质结构的设计,但具有自然开关样信号蛋白特征的可控构象动力学在设计中仍然难以实现。在此,我们描述了一种通用的深度学习引导方法,用于设计蛋白质域内几何结构之间的动态变化,类似于自然界中普遍存在的开关机制,具有原子级精度。我们解析了4种结构,验证了设计的构象,展示了它们之间微秒级的转变,并证明构象景观可由正构配体和变构突变调节。基于物理的模拟与深度学习预测和实验数据高度一致,揭示了不同状态依赖的残基相互作用网络,并预测了调节设计构象景观的突变。我们的方法表明,现在可以通过设计实现新的运动模式,并为构建受生物学启发、可调节和可控的蛋白质信号行为提供了一个框架。