Suppr超能文献

定制多孔硅微球:制备与性能。

Tailored porous silicon microparticles: fabrication and properties.

机构信息

Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.

出版信息

Chemphyschem. 2010 Apr 6;11(5):1029-35. doi: 10.1002/cphc.200900914.

Abstract

The use of mesoporous silicon particles for drug delivery has been widely explored thanks to their biodegradability and biocompatibility. The ability to tailor the physicochemical properties of porous silicon at the micro- and nanoscale confers versatility to this material. A method for the fabrication of highly reproducible, monodisperse, mesoporous silicon particles with controlled physical characteristics through electrochemical etching of patterned silicon trenches is presented. The particle size is tailored in the micrometer range and pore size in the nanometer range, the shape from tubular to discoidal to hemispherical, and the porosity from 46 to over 80%. In addition, the properties of the porous matrix are correlated with the loading of model nanoparticles (quantum dots) and their three-dimensional arrangement within the matrix is observed by transmission electron microscopy tomography. The methods developed in this study provide effective means to fabricate mesoporous silicon particles according to the principles of rational design for therapeutic vectors and to characterize the distribution of nanoparticles within the porous matrix.

摘要

得益于其生物降解性和生物相容性,介孔硅颗粒在药物输送中的应用得到了广泛的探索。通过对图案化硅沟槽进行电化学刻蚀,可以在微纳尺度上定制多孔硅的物理化学性质,从而赋予该材料多功能性。本文提出了一种通过电化学刻蚀图案化硅沟槽来制备具有高度重现性、单分散性、可控物理特性的介孔硅颗粒的方法。颗粒尺寸可在微米范围内调节,孔径在纳米范围内,形状从管状到盘状到半球形,孔隙率从 46%到 80%以上。此外,多孔基质的性能与模型纳米粒子(量子点)的负载相关,并且通过透射电子显微镜断层扫描观察到它们在基质中的三维排列。本研究中开发的方法为根据治疗载体的合理设计原则制备介孔硅颗粒并对纳米颗粒在多孔基质中的分布进行表征提供了有效的手段。

相似文献

1
Tailored porous silicon microparticles: fabrication and properties.
Chemphyschem. 2010 Apr 6;11(5):1029-35. doi: 10.1002/cphc.200900914.
2
Encapsulation of quantum nanodots in polystyrene and silica micro-/nanoparticles.
Langmuir. 2004 Jul 6;20(14):6071-3. doi: 10.1021/la049610t.
4
Patterned assembly of quantum dots onto surfaces modified with click microcontact printing.
Adv Mater. 2013 Jan 11;25(2):223-6. doi: 10.1002/adma.201202606. Epub 2012 Oct 19.
5
CdSe/CdS/SiO2 core/shell/shell nanoparticles.
J Nanosci Nanotechnol. 2007 Jul;7(7):2343-8. doi: 10.1166/jnn.2007.438.
6
Shape-engineered multifunctional porous silicon nanoparticles by direct imprinting.
Nanotechnology. 2015 Jul 10;26(27):271001. doi: 10.1088/0957-4484/26/27/271001. Epub 2015 Jun 17.
7
Smooth surface roughness of silanized CdSe(ZnS) quantum dots.
J Colloid Interface Sci. 2013 Mar 1;393:21-8. doi: 10.1016/j.jcis.2012.10.054. Epub 2012 Nov 27.
8
Hierarchically structured porous cadmium selenide polycrystals using polystyrene bilayer templates.
Langmuir. 2012 Sep 18;28(37):13149-56. doi: 10.1021/la3020805. Epub 2012 Sep 4.
10
Optical properties of CdSe nanoparticles embedded in polyvinyl alcohol matrix.
J Nanosci Nanotechnol. 2013 Jan;13(1):300-5. doi: 10.1166/jnn.2013.6731.

引用本文的文献

2
Spatially-Resolved Organoid Transfection by Porous Silicon-Mediated Optoporation.
Adv Mater. 2024 Dec;36(49):e2407650. doi: 10.1002/adma.202407650. Epub 2024 Oct 17.
3
Cuboids Prevail When Unraveling the Influence of Microchip Geometry on Macrophage Interactions and Metabolic Responses.
ACS Biomater Sci Eng. 2024 Sep 9;10(9):5689-5700. doi: 10.1021/acsbiomaterials.4c00849. Epub 2024 Aug 21.
4
Integrating Porous Silicon Nanoneedles within Medical Devices for Nucleic Acid Nanoinjection.
ACS Nano. 2024 Jun 11;18(23):14938-14953. doi: 10.1021/acsnano.4c00206. Epub 2024 May 10.
5
Research Progress on Cell Membrane-Coated Biomimetic Delivery Systems.
Front Bioeng Biotechnol. 2021 Nov 16;9:772522. doi: 10.3389/fbioe.2021.772522. eCollection 2021.
6
Tutorial: using nanoneedles for intracellular delivery.
Nat Protoc. 2021 Oct;16(10):4539-4563. doi: 10.1038/s41596-021-00600-7. Epub 2021 Aug 23.
8
Liposome-Embedding Silicon Microparticle for Oxaliplatin Delivery in Tumor Chemotherapy.
Pharmaceutics. 2020 Jun 17;12(6):559. doi: 10.3390/pharmaceutics12060559.
10
Systematic comparison of methods for determining the in vivo biodistribution of porous nanostructured injectable inorganic particles.
Acta Biomater. 2019 Oct 1;97:501-512. doi: 10.1016/j.actbio.2019.08.002. Epub 2019 Aug 3.

本文引用的文献

1
The association of silicon microparticles with endothelial cells in drug delivery to the vasculature.
Biomaterials. 2009 May;30(13):2440-8. doi: 10.1016/j.biomaterials.2009.01.019. Epub 2009 Feb 12.
2
Intravascular delivery of particulate systems: does geometry really matter?
Pharm Res. 2009 Jan;26(1):235-43. doi: 10.1007/s11095-008-9697-x. Epub 2008 Aug 20.
3
The effect of particle design on cellular internalization pathways.
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11613-8. doi: 10.1073/pnas.0801763105. Epub 2008 Aug 12.
4
Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications.
Nat Nanotechnol. 2008 Mar;3(3):151-7. doi: 10.1038/nnano.2008.34. Epub 2008 Mar 2.
5
The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows.
J Biomech. 2008 Jul 19;41(10):2312-8. doi: 10.1016/j.jbiomech.2008.03.021. Epub 2008 Jun 20.
7
Digital microfluidics and delivery of molecular payloads with magnetic porous silicon chaperones.
Dalton Trans. 2008 Feb 14(6):721-30. doi: 10.1039/b714594b. Epub 2007 Nov 16.
8
Design maps for nanoparticles targeting the diseased microvasculature.
Biomaterials. 2008 Jan;29(3):377-84. doi: 10.1016/j.biomaterials.2007.09.025. Epub 2007 Oct 22.
10
The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles.
Biomaterials. 2007 Jun;28(18):2915-22. doi: 10.1016/j.biomaterials.2007.02.013. Epub 2007 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验