Levine R J, Chantler P D, Kensler R W, Woodhead J L
Department of Anatomy and Neurobiology, Medical College of Pennsylvania, Philadelphia 19129.
J Cell Biol. 1991 May;113(3):563-72. doi: 10.1083/jcb.113.3.563.
The results discussed in the preceding paper (Levine, R. J. C., J. L. Woodhead, and H. A. King. 1991. J. Cell Biol. 113:563-572.) indicate that A-band shortening in Limulus muscle is a thick filament response to activation that occurs largely by fragmentation of filament ends. To assess the effect of biochemical changes directly associated with activation on the length and structure of thick filaments from Limulus telson muscle, a dually regulated tissue (Lehman, W., J. Kendrick-Jones, and A. G. Szent Gyorgyi. 1973. Cold Spring Harbor Symp. Quant. Biol. 37:319-330.) we have examined the thick filament response to phosphorylation of myosin regulatory light chains. In agreement with the previous work of J. Sellers (1981. J. Biol. Chem. 256:9274-9278), Limulus myosin, incubated with partially purified chicken gizzard myosin light chain kinase (MLCK) and [gamma 32P]-ATP, binds 2 mol phosphate/mole protein. On autoradiographs of SDS-PAGE, the label is restricted to the two regulatory light chains, LC1 and LC2. Incubation of long (greater than or equal to 4.0 microns) thick filaments, separated from Limulus telson muscle under relaxing conditions, with either intact MLCK in the presence of Ca2+ and calmodulin, or Ca2(+)-independent MLCK obtained by brief chymotryptic digestion (Walsh, M. P., R. Dabrowska, S. Hinkins, and D. J. Hartshorne. 1982. Biochemistry. 21:1919-1925), causes significant changes in their structure. These include: disordering of the helical surface arrangement of myosin heads as they move away from the filament backbone; the presence of distal bends and breaks, with loss of some surface myosin molecules, in each polar filament half; and the production of shorter filaments and end-fragments. The latter structures are similar to those produced by Ca2(+)-activation of skinned fibers (Levine, R. J. C., J. L. Woodhead, and H. A. King. J. Cell Biol. 113:563-572). Rinsing experimental filament preparations with relaxing solution before staining restores some degree of order of the helical surface array, but not filament length. We propose that outward movement of myosin heads and thick filament shortening in Limulus muscle are responses to activation that are dependent on phosphorylation of regulatory myosin light chains. Filament shortening may be due, in large part, to breakage at the filament ends.
前一篇论文(莱文,R.J.C.,J.L.伍德黑德和H.A.金。1991年。《细胞生物学杂志》113:563 - 572)中讨论的结果表明,鲎肌肉中的A带缩短是粗肌丝对激活的反应,这种反应主要通过肌丝末端的断裂发生。为了评估与激活直接相关的生化变化对鲎尾节肌粗肌丝长度和结构的影响,鲎尾节肌是一种双重调节的组织(莱曼,W.,J.肯德里克 - 琼斯和A.G.圣乔治·乔吉。1973年。《定量生物学冷泉港研讨会》37:319 - 330),我们研究了粗肌丝对肌球蛋白调节轻链磷酸化的反应。与J.塞勒斯之前的工作(1981年。《生物化学杂志》256:9274 - 9278)一致,将鲎肌球蛋白与部分纯化的鸡砂囊肌球蛋白轻链激酶(MLCK)和[γ - 32P] - ATP一起孵育,每摩尔蛋白质结合2摩尔磷酸盐。在SDS - PAGE的放射自显影片上,标记仅限于两条调节轻链,LC1和LC2。在松弛条件下从鲎尾节肌分离出的长(大于或等于4.0微米)粗肌丝,与在Ca2 +和钙调蛋白存在下的完整MLCK或通过短暂胰凝乳蛋白酶消化获得的Ca2(+)非依赖性MLCK(沃尔什,M.P.,R.达布罗夫斯卡,S.欣金斯和D.J.哈茨霍恩。1982年。《生物化学》21:1919 - 1925)一起孵育,会导致其结构发生显著变化。这些变化包括:肌球蛋白头部从肌丝主干移开时,其螺旋表面排列紊乱;每个极性肌丝半段出现远端弯曲和断裂,一些表面肌球蛋白分子丢失;以及产生更短的肌丝和末端片段。后一种结构类似于通过对去表皮纤维进行Ca2(+)激活产生的结构(莱文,R.J.C.,J.L.伍德黑德和H.A.金。《细胞生物学杂志》113:563 - 572)。在染色前用松弛溶液冲洗实验性肌丝制剂可恢复螺旋表面排列的某种程度的有序性,但不能恢复肌丝长度。我们提出,鲎肌肉中肌球蛋白头部的向外移动和粗肌丝缩短是对激活的反应,这种反应依赖于调节性肌球蛋白轻链的磷酸化。肌丝缩短可能在很大程度上是由于肌丝末端的断裂。