Suppr超能文献

高场临床扫描仪上采用改进的梯度调制恒绝热脉冲的光谱成象。

Spectroscopic imaging with improved gradient modulated constant adiabaticity pulses on high-field clinical scanners.

机构信息

Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA.

出版信息

J Magn Reson. 2010 Apr;203(2):283-93. doi: 10.1016/j.jmr.2010.01.010. Epub 2010 Jan 28.

Abstract

The purpose of this work was to design and implement constant adiabaticity gradient modulated pulses that have improved slice profiles and reduced artifacts for spectroscopic imaging on 3T clinical scanners equipped with standard hardware. The newly proposed pulses were designed using the gradient offset independent adiabaticity (GOIA, Tannus and Garwood[13]) method using WURST modulation for RF and gradient waveforms. The GOIA-WURST pulses were compared with GOIA-HSn (GOIA based on nth-order hyperbolic secant) and FOCI (frequency offset corrected inversion) pulses of the same bandwidth and duration. Numerical simulations and experimental measurements in phantoms and healthy volunteers are presented. GOIA-WURST pulses provide improved slice profile that have less slice smearing for off-resonance frequencies compared to GOIA-HSn pulses. The peak RF amplitude of GOIA-WURST is much lower (40% less) than FOCI but slightly higher (14.9% more) to GOIA-HSn. The quality of spectra as shown by the analysis of lineshapes, eddy currents artifacts, subcutaneous lipid contamination and SNR is improved for GOIA-WURST. GOIA-WURST pulse tested in this work shows that reliable spectroscopic imaging could be obtained in routine clinical setup and might facilitate the use of clinical spectroscopy.

摘要

这项工作的目的是设计和实现恒绝热梯度调制脉冲,以改善在配备标准硬件的 3T 临床扫描仪上进行光谱成像的切片轮廓并减少伪影。新提出的脉冲使用梯度偏移独立绝热性(GOIA,Tannus 和 Garwood[13])方法设计,使用 WURST 调制 RF 和梯度波形。将 GOIA-WURST 脉冲与具有相同带宽和持续时间的 GOIA-HSn(基于 n 阶双曲正割的 GOIA)和 FOCI(频率偏移校正反转)脉冲进行了比较。在体模和健康志愿者中进行了数值模拟和实验测量。与 GOIA-HSn 脉冲相比,GOIA-WURST 脉冲提供了改善的切片轮廓,对于离频频率的切片模糊程度较小。与 FOCI 相比,GOIA-WURST 的峰值 RF 幅度要低得多(低 40%),但比 GOIA-HSn 略高(高 14.9%)。线形状、涡流伪影、皮下脂质污染和 SNR 的分析表明,GOIA-WURST 的光谱质量得到了改善。本工作中测试的 GOIA-WURST 脉冲表明,在常规临床设置中可以获得可靠的光谱成像,并且可能有助于临床光谱学的应用。

相似文献

1
Spectroscopic imaging with improved gradient modulated constant adiabaticity pulses on high-field clinical scanners.
J Magn Reson. 2010 Apr;203(2):283-93. doi: 10.1016/j.jmr.2010.01.010. Epub 2010 Jan 28.
4
Transmit Array Spatial Encoding (TRASE) using broadband WURST pulses for RF spatial encoding in inhomogeneous B0 fields.
J Magn Reson. 2016 Jul;268:36-48. doi: 10.1016/j.jmr.2016.04.005. Epub 2016 Apr 8.
5
B1 mapping of short T2 * spins using a 3D radial gradient echo sequence.
Magn Reson Med. 2014 May;71(5):1689-99. doi: 10.1002/mrm.24817. Epub 2013 Jun 10.
7
Across-vendor standardization of semi-LASER for single-voxel MRS at 3T.
NMR Biomed. 2021 May;34(5):e4218. doi: 10.1002/nbm.4218. Epub 2019 Dec 18.
8
Correlation chemical shift imaging with low-power adiabatic pulses and constant-density spiral trajectories.
NMR Biomed. 2012 Feb;25(2):195-209. doi: 10.1002/nbm.1730. Epub 2011 Jul 20.
9
Evolution strategy optimization for adiabatic pulses in MRI.
J Magn Reson. 1999 May;138(1):48-53. doi: 10.1006/jmre.1998.1677.
10
Practical considerations for the design of sparse-spokes pulses.
J Magn Reson. 2010 Apr;203(2):294-304. doi: 10.1016/j.jmr.2010.01.012. Epub 2010 Feb 4.

引用本文的文献

2
sLASER and PRESS perform similarly at revealing metabolite-age correlations at 3 T.
Magn Reson Med. 2024 Feb;91(2):431-442. doi: 10.1002/mrm.29895. Epub 2023 Oct 24.
3
MRSCloud: A cloud-based MRS tool for basis set simulation.
Magn Reson Med. 2022 Nov;88(5):1994-2004. doi: 10.1002/mrm.29370. Epub 2022 Jul 1.
6
Developments in proton MR spectroscopic imaging of prostate cancer.
MAGMA. 2022 Aug;35(4):645-665. doi: 10.1007/s10334-022-01011-9. Epub 2022 Apr 20.
7
SLOW: A novel spectral editing method for whole-brain MRSI at ultra high magnetic field.
Magn Reson Med. 2022 Jul;88(1):53-70. doi: 10.1002/mrm.29220. Epub 2022 Mar 28.
8
In Vivo Absolute Metabolite Quantification Using a Multiplexed ERETIC-RX Array Coil for Whole-Brain MR Spectroscopic Imaging.
J Magn Reson Imaging. 2022 Jul;56(1):121-133. doi: 10.1002/jmri.28028. Epub 2021 Dec 27.
9
Broadband selective excitation radiofrequency pulses for optimized localization in vivo.
Magn Reson Med. 2022 May;87(5):2111-2119. doi: 10.1002/mrm.29119. Epub 2021 Dec 6.

本文引用的文献

4
Brain morphometry with multiecho MPRAGE.
Neuroimage. 2008 Apr 1;40(2):559-569. doi: 10.1016/j.neuroimage.2007.12.025. Epub 2008 Feb 1.
6
Adiabatic refocusing pulses for volume selection in magnetic resonance spectroscopic imaging.
Magn Reson Med. 2007 Mar;57(3):548-53. doi: 10.1002/mrm.21162.
8
Parallel RF transmission with eight channels at 3 Tesla.
Magn Reson Med. 2006 Nov;56(5):1163-71. doi: 10.1002/mrm.21042.
9
Spin-echo MRS in humans at high field: LASER localisation using FOCI pulses.
J Magn Reson. 2005 Jul;175(1):30-43. doi: 10.1016/j.jmr.2005.03.009. Epub 2005 Apr 14.
10
Localized in vivo human 1H MRS at very short echo times.
Magn Reson Med. 2004 Oct;52(4):898-901. doi: 10.1002/mrm.20201.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验