A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Radiology, Boston, Massachusetts, USA.
High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Vienna, Austria.
NMR Biomed. 2022 Jan;35(1):e4621. doi: 10.1002/nbm.4621. Epub 2021 Oct 5.
MR spectroscopic imaging (MRSI) noninvasively maps the metabolism of human brains. In particular, the imaging of D-2-hydroxyglutarate (2HG) produced by glioma isocitrate dehydrogenase (IDH) mutations has become a key application in neuro-oncology. However, the performance of full field-of-view MRSI is limited by B spatial nonuniformity and lipid artifacts from tissues surrounding the brain. Array coils that multiplex RF-receive and B -shim electrical currents (AC/DC mixing) over the same conductive loops provide many degrees of freedom to improve B uniformity and reduce lipid artifacts. AC/DC coils are highly efficient due to compact design, requiring low shim currents (<2 A) that can be switched fast (0.5 ms) with high interscan reproducibility (10% coefficient of variation for repeat measurements). We measured four tumor patients and five volunteers at 3 T and show that using AC/DC coils in addition to the vendor-provided second-order spherical harmonics shim provides 19% narrower spectral linewidth, 6% higher SNR, and 23% less lipid content for unrestricted field-of-view MRSI, compared with the vendor-provided shim alone. We demonstrate that improvement in MRSI data quality led to 2HG maps with higher contrast-to-noise ratio for tumors that coincide better with the FLAIR-enhancing lesions in mutant IDH glioma patients. Smaller Cramér-Rao lower bounds for 2HG quantification are obtained in tumors by AC/DC shim, corroborating with simulations that predicted improved accuracy and precision for narrower linewidths. AC/DC coils can be used synergistically with optimized acquisition schemes to improve metabolic imaging for precision oncology of glioma patients. Furthermore, this methodology has broad applicability to other neurological disorders and neuroscience.
磁共振波谱成像(MRSI)可无创性地对人脑代谢进行成像。特别是,通过对胶质瘤异柠檬酸脱氢酶(IDH)突变产生的 D-2-羟基戊二酸(2HG)进行成像,已成为神经肿瘤学的一个关键应用。然而,全视野 MRSI 的性能受到 B 空间非均匀性和来自大脑周围组织的脂质伪影的限制。接收射频的阵列线圈和 B -匀场电流(AC/DC 混合)复用相同的导电回路,为改善 B 均匀性和减少脂质伪影提供了许多自由度。由于紧凑的设计,AC/DC 线圈效率很高,所需的匀场电流低(<2 A),可以快速切换(0.5 ms),且具有高的扫描间可重复性(重复测量的 10%变化系数)。我们在 3 T 对四名肿瘤患者和五名志愿者进行了测量,结果表明,与仅使用供应商提供的二阶球谐匀场相比,使用 AC/DC 线圈外加供应商提供的二次谐波匀场,可使无限制视野 MRSI 的谱线宽度变窄 19%,信噪比提高 6%,脂质含量减少 23%。我们证明,MRSI 数据质量的提高导致 2HG 图谱的肿瘤对比度噪声比更高,与突变 IDH 胶质瘤患者的 FLAIR 增强病变吻合更好。通过 AC/DC 匀场,肿瘤中的 2HG 定量的 Cramér-Rao 下限更小,这与预测线宽变窄可提高准确性和精度的模拟结果一致。AC/DC 线圈可与优化的采集方案协同使用,以提高胶质瘤患者精准肿瘤学的代谢成像。此外,这种方法具有广泛的适用性,可用于其他神经疾病和神经科学。