Computational and Systems Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
Nucleic Acids Res. 2010 Jun;38(10):e115. doi: 10.1093/nar/gkq042. Epub 2010 Feb 17.
Fluorescent in situ hybridization (FISH) techniques are becoming extremely sensitive, to the point where individual RNA or DNA molecules can be detected with small probes. At this level of sensitivity, the elimination of 'off-target' hybridization is of crucial importance, but typical probes used for RNA and DNA FISH contain sequences repeated elsewhere in the genome. We find that very short (e.g. 20 nt) perfect repeated sequences within much longer probes (e.g. 350-1500 nt) can produce significant off-target signals. The extent of noise is surprising given the long length of the probes and the short length of non-specific regions. When we removed the small regions of repeated sequence from either short or long probes, we find that the signal-to-noise ratio is increased by orders of magnitude, putting us in a regime where fluorescent signals can be considered to be a quantitative measure of target transcript numbers. As the majority of genes in complex organisms contain repeated k-mers, we provide genome-wide annotations of k-mer-uniqueness at http://cbio.mskcc.org/ approximately aarvey/repeatmap.
荧光原位杂交(FISH)技术变得非常敏感,以至于可以用小探针检测到单个 RNA 或 DNA 分子。在这种灵敏度水平下,消除“非靶标”杂交至关重要,但是用于 RNA 和 DNA FISH 的典型探针包含基因组中其他地方重复的序列。我们发现,在更长的探针(例如 350-1500 个核苷酸)内非常短(例如 20 个核苷酸)的完美重复序列会产生显著的非靶标信号。鉴于探针的长度很长,非特异性区域的长度很短,因此噪声的程度令人惊讶。当我们从短探针或长探针中去除小的重复序列区域时,我们发现信号与噪声的比率增加了几个数量级,使我们处于这样一个区域,其中荧光信号可以被认为是靶转录物数量的定量测量。由于复杂生物中的大多数基因都包含重复的 k-mer,因此我们在 http://cbio.mskcc.org/ 上提供了 k-mer-uniqueness 的全基因组注释,大约是 aarvey/repeatmap。