Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK.
J Neurophysiol. 2010 May;103(5):2544-56. doi: 10.1152/jn.01017.2009. Epub 2010 Feb 17.
Functional magnetic resonance imaging (fMRI) is now routinely used to map the topographic organization of human visual cortex. Mapping the detailed topography of somatosensory cortex, however, has proven to be more difficult. Here we used the increased blood-oxygen-level-dependent contrast-to-noise ratio at ultra-high field (7 Tesla) to measure the topographic representation of the digits in human somatosensory cortex at 1 mm isotropic resolution in individual subjects. A "traveling wave" paradigm was used to locate regions of cortex responding to periodic tactile stimulation of each distal phalangeal digit. Tactile stimulation was applied sequentially to each digit of the left hand from thumb to little finger (and in the reverse order). In all subjects, we found an orderly map of the digits on the posterior bank of the central sulcus (postcentral gyrus). Additionally, we measured event-related responses to brief stimuli for comparison with the topographic mapping data and related the fMRI responses to anatomical images obtained with an inversion-recovery sequence. Our results have important implications for the study of human somatosensory cortex and underscore the practical utility of ultra-high field functional imaging with 1 mm isotropic resolution for neuroscience experiments. First, topographic mapping of somatosensory cortex can be achieved in 20 min, allowing time for further experiments in the same session. Second, the maps are of sufficiently high resolution to resolve the representations of all five digits and third, the measurements are robust and can be made in an individual subject. These combined advantages will allow somatotopic fMRI to be used to measure the representation of digits in patients undergoing rehabilitation or plastic changes after peripheral nerve damage as well as tracking changes in normal subjects undergoing perceptual learning.
功能磁共振成像(fMRI)现在通常用于绘制人类视觉皮层的地形组织图。然而,绘制躯体感觉皮层的详细地形却被证明更加困难。在这里,我们使用超高场(7 特斯拉)的血氧水平依赖对比噪声比增加来测量个体受试者中 1 毫米各向同性分辨率的人类躯体感觉皮层中数字的拓扑表示。使用“行波”范式来定位对每个远节指骨的周期性触觉刺激有反应的皮质区域。触觉刺激依次施加于左手的每个手指(并以相反的顺序)。在所有受试者中,我们在手中央沟(后中央回)的后缘发现了一个有序的数字图谱。此外,我们还测量了短暂刺激的事件相关反应,以便与拓扑映射数据进行比较,并将 fMRI 反应与使用反转恢复序列获得的解剖图像相关联。我们的结果对人类躯体感觉皮层的研究具有重要意义,并强调了具有 1 毫米各向同性分辨率的超高场功能成像在神经科学实验中的实际应用。首先,躯体感觉皮层的拓扑映射可以在 20 分钟内完成,为同一会话中的进一步实验留出时间。其次,图谱具有足够高的分辨率,可以分辨所有五个数字的表示,第三,测量结果是稳健的,可以在个体受试者中进行。这些综合优势将使躯体感觉 fMRI 能够用于测量接受康复治疗或外周神经损伤后塑性变化的患者的数字表示,以及跟踪接受感知学习的正常受试者的变化。