Suppr超能文献

DomSVR:仅从序列信息进行支持向量回归的域边界预测。

DomSVR: domain boundary prediction with support vector regression from sequence information alone.

机构信息

Department of Systems and Computer Science, Howard University, 2400 Sixth Street, NW, Washington, DC 20059, USA.

出版信息

Amino Acids. 2010 Aug;39(3):713-26. doi: 10.1007/s00726-010-0506-6. Epub 2010 Feb 18.

Abstract

Protein domains are structural and fundamental functional units of proteins. The information of protein domain boundaries is helpful in understanding the evolution, structures and functions of proteins, and also plays an important role in protein classification. In this paper, we propose a support vector regression-based method to address the problem of protein domain boundary identification based on novel input profiles extracted from AAindex database. As a result, our method achieves an average sensitivity of approximately 36.5% and an average specificity of approximately 81% for multi-domain protein chains, which is overall better than the performance of published approaches to identify domain boundary. As our method used sequence information alone, our method is simpler and faster.

摘要

蛋白质结构域是蛋白质的结构和基本功能单位。蛋白质结构域边界的信息有助于理解蛋白质的进化、结构和功能,并且在蛋白质分类中也起着重要的作用。在本文中,我们提出了一种基于支持向量回归的方法,该方法基于从 AAindex 数据库中提取的新输入谱来解决蛋白质结构域边界识别问题。结果表明,对于多结构域蛋白质链,我们的方法的平均灵敏度约为 36.5%,平均特异性约为 81%,总体上优于已发表的识别结构域边界的方法。由于我们的方法仅使用序列信息,因此我们的方法更简单、更快。

相似文献

1
DomSVR: domain boundary prediction with support vector regression from sequence information alone.
Amino Acids. 2010 Aug;39(3):713-26. doi: 10.1007/s00726-010-0506-6. Epub 2010 Feb 18.
3
Domain boundary prediction based on profile domain linker propensity index.
Comput Biol Chem. 2006 Apr;30(2):127-33. doi: 10.1016/j.compbiolchem.2006.01.001. Epub 2006 Mar 13.
4
DoBo: Protein domain boundary prediction by integrating evolutionary signals and machine learning.
BMC Bioinformatics. 2011 Feb 1;12:43. doi: 10.1186/1471-2105-12-43.
5
DomHR: accurately identifying domain boundaries in proteins using a hinge region strategy.
PLoS One. 2013 Apr 11;8(4):e60559. doi: 10.1371/journal.pone.0060559. Print 2013.
6
Improving the performance of DomainDiscovery of protein domain boundary assignment using inter-domain linker index.
BMC Bioinformatics. 2006 Dec 18;7 Suppl 5(Suppl 5):S6. doi: 10.1186/1471-2105-7-S5-S6.
7
Delineation of modular proteins: domain boundary prediction from sequence information.
Brief Bioinform. 2004 Jun;5(2):179-92. doi: 10.1093/bib/5.2.179.
8
Improved general regression network for protein domain boundary prediction.
BMC Bioinformatics. 2008;9 Suppl 1(Suppl 1):S12. doi: 10.1186/1471-2105-9-S1-S12.
9
SnapDRAGON: a method to delineate protein structural domains from sequence data.
J Mol Biol. 2002 Feb 22;316(3):839-51. doi: 10.1006/jmbi.2001.5387.
10
Rebelling for a reason: protein structural "outliers".
PLoS One. 2013 Sep 20;8(9):e74416. doi: 10.1371/journal.pone.0074416. eCollection 2013.

引用本文的文献

1
Res-Dom: predicting protein domain boundary from sequence using deep residual network and Bi-LSTM.
Bioinform Adv. 2022 Sep 1;2(1):vbac060. doi: 10.1093/bioadv/vbac060. eCollection 2022.
3
Protein domain identification methods and online resources.
Comput Struct Biotechnol J. 2021 Feb 2;19:1145-1153. doi: 10.1016/j.csbj.2021.01.041. eCollection 2021.
5
DrugECs: An Ensemble System with Feature Subspaces for Accurate Drug-Target Interaction Prediction.
Biomed Res Int. 2017;2017:6340316. doi: 10.1155/2017/6340316. Epub 2017 Jul 4.
6
LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone.
BMC Bioinformatics. 2014;15 Suppl 15(Suppl 15):S4. doi: 10.1186/1471-2105-15-S15-S4. Epub 2014 Dec 3.
7
Prediction of peptide drift time in ion mobility mass spectrometry from sequence-based features.
BMC Bioinformatics. 2013;14 Suppl 8(Suppl 8):S9. doi: 10.1186/1471-2105-14-S8-S9. Epub 2013 May 9.
8
DomHR: accurately identifying domain boundaries in proteins using a hinge region strategy.
PLoS One. 2013 Apr 11;8(4):e60559. doi: 10.1371/journal.pone.0060559. Print 2013.
9
The MULTICOM toolbox for protein structure prediction.
BMC Bioinformatics. 2012 Apr 30;13:65. doi: 10.1186/1471-2105-13-65.

本文引用的文献

1
Improved general regression network for protein domain boundary prediction.
BMC Bioinformatics. 2008;9 Suppl 1(Suppl 1):S12. doi: 10.1186/1471-2105-9-S1-S12.
2
AAindex: amino acid index database, progress report 2008.
Nucleic Acids Res. 2008 Jan;36(Database issue):D202-5. doi: 10.1093/nar/gkm998. Epub 2007 Nov 12.
4
5
Prediction of protein B-factors using multi-class bounded SVM.
Protein Pept Lett. 2007;14(2):185-90. doi: 10.2174/092986607779816078.
6
Improving the performance of DomainDiscovery of protein domain boundary assignment using inter-domain linker index.
BMC Bioinformatics. 2006 Dec 18;7 Suppl 5(Suppl 5):S6. doi: 10.1186/1471-2105-7-S5-S6.
7
CDD: a conserved domain database for interactive domain family analysis.
Nucleic Acids Res. 2007 Jan;35(Database issue):D237-40. doi: 10.1093/nar/gkl951. Epub 2006 Nov 29.
8
SSEP-Domain: protein domain prediction by alignment of secondary structure elements and profiles.
Bioinformatics. 2006 Jan 15;22(2):181-7. doi: 10.1093/bioinformatics/bti751. Epub 2005 Nov 2.
9
Protein structure prediction servers at University College London.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W36-8. doi: 10.1093/nar/gki410.
10
Armadillo: domain boundary prediction by amino acid composition.
J Mol Biol. 2005 Jul 29;350(5):1061-73. doi: 10.1016/j.jmb.2005.05.037.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验