Suppr超能文献

DrugECs:一种具有特征子空间的集成系统,用于准确的药物-靶点相互作用预测。

DrugECs: An Ensemble System with Feature Subspaces for Accurate Drug-Target Interaction Prediction.

作者信息

Jiang Jinjian, Wang Nian, Chen Peng, Zhang Jun, Wang Bing

机构信息

School of Electronics and Information Engineering, Anhui University, Hefei, Anhui 230601, China.

School of Computer and Information, Anqing Normal University, Anqing, Anhui 246133, China.

出版信息

Biomed Res Int. 2017;2017:6340316. doi: 10.1155/2017/6340316. Epub 2017 Jul 4.

Abstract

BACKGROUND

Drug-target interaction is key in drug discovery, especially in the design of new lead compound. However, the work to find a new lead compound for a specific target is complicated and hard, and it always leads to many mistakes. Therefore computational techniques are commonly adopted in drug design, which can save time and costs to a significant extent.

RESULTS

To address the issue, a new prediction system is proposed in this work to identify drug-target interaction. First, drug-target pairs are encoded with a fragment technique and the software "PaDEL-Descriptor." The fragment technique is for encoding target proteins, which divides each protein sequence into several fragments in order and encodes each fragment with several physiochemical properties of amino acids. The software "PaDEL-Descriptor" creates encoding vectors for drug molecules. Second, the dataset of drug-target pairs is resampled and several overlapped subsets are obtained, which are then input into kNN (-Nearest Neighbor) classifier to build an ensemble system.

CONCLUSION

Experimental results on the drug-target dataset showed that our method performs better and runs faster than the state-of-the-art predictors.

摘要

背景

药物-靶点相互作用是药物研发的关键,尤其是在新先导化合物的设计中。然而,针对特定靶点寻找新先导化合物的工作复杂且困难,并且常常会导致许多错误。因此,药物设计中普遍采用计算技术,这可以在很大程度上节省时间和成本。

结果

为了解决这个问题,本研究提出了一种新的预测系统来识别药物-靶点相互作用。首先,使用片段技术和“PaDEL-Descriptor”软件对药物-靶点对进行编码。片段技术用于对靶蛋白进行编码,它将每个蛋白质序列按顺序分成几个片段,并用氨基酸的几种理化性质对每个片段进行编码。“PaDEL-Descriptor”软件为药物分子创建编码向量。其次,对药物-靶点对的数据集进行重采样,得到几个重叠的子集,然后将其输入到kNN(k近邻)分类器中构建一个集成系统。

结论

在药物-靶点数据集上的实验结果表明,我们的方法比现有最佳预测器性能更好且运行速度更快。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/087a/5514335/6099f8eb877a/BMRI2017-6340316.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验