Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road E156, Evanston, IL 60208-3120, USA.
Acta Biomater. 2010 Aug;6(8):2889-97. doi: 10.1016/j.actbio.2010.02.018. Epub 2010 Feb 16.
Patterning of gene delivery on sub-millimeter length scales within tissue engineering scaffolds is fundamental to recreating the complex architectures of tissues. Surface-mediated delivery of lipoplexes mixed with fibronectin was investigated to pattern vectors within 250 microm channels in poly(lactide-co-glycolide) (PLG) bridges. Initial studies performed in vitro on PLG surfaces indicated that a DNA density of 0.07 microg mm(-2) inside each channel with a weight ratio of DNA to fibronectin of 1:20 maximized the number of transfected cells and the levels of transgene expression. Patterned vectors encoding for nerve growth factor (NGF) resulted in localized neurite extension within the channel. Translation to three-dimensional multiple-channel bridges enabled patterned transfection of different vectors throughout the channels for DNA:fibronectin ratios of 1:4 and multiple DNA depositions, with a large increase of neural cell bodies and neurite extension for delivery of DNA encoding for NGF. In vivo, the immobilization of non-viral vectors within the channels resulted in localized transfection within the pore structure of the bridge immediately around the channels of the bridge containing DNA. This surface immobilization strategy enables patterned gene delivery in vitro and in vivo on length scales of hundreds of microns and may find utility in strategies aimed at regenerating tissues with complex architectures.
在组织工程支架内对亚毫米长度尺度上的基因传递进行图案化,对于重现组织的复杂结构至关重要。研究了在聚(乳酸-共-乙醇酸)(PLG)桥的 250 微米通道内,利用纤维连接蛋白混合的脂质体进行表面介导的基因传递来进行图案化。在 PLG 表面上进行的初步体外研究表明,每个通道内的 DNA 密度为 0.07 微克/mm²,DNA 与纤维连接蛋白的重量比为 1:20,可最大限度地提高转染细胞的数量和转基因表达水平。编码神经生长因子(NGF)的图案化载体可导致通道内局部神经突延伸。将其转化为三维多通道桥后,可对不同的载体进行图案化转染,以实现 DNA:纤维连接蛋白比为 1:4 和多次 DNA 沉积,对于 NGF 编码 DNA 的传递,可显著增加神经细胞体和神经突延伸。在体内,非病毒载体在通道内的固定化导致在桥的通道周围的桥的孔结构内局部转染。这种表面固定化策略可在体外和体内实现数百微米长度尺度上的图案化基因传递,并可能在旨在再生具有复杂结构的组织的策略中具有实用性。