Suppr超能文献

想象和执行手部运动时的速度与 EEG 活动之间的关系。

Relationship between speed and EEG activity during imagined and executed hand movements.

机构信息

Department of Biomedical Engineering, University of Minnesota, MN, USA.

出版信息

J Neural Eng. 2010 Apr;7(2):26001. doi: 10.1088/1741-2560/7/2/026001. Epub 2010 Feb 18.

Abstract

The relationship between primary motor cortex and movement kinematics has been shown in nonhuman primate studies of hand reaching or drawing tasks. Studies have demonstrated that the neural activities accompanying or immediately preceding the movement encode the direction, speed and other information. Here we investigated the relationship between the kinematics of imagined and actual hand movement, i.e. the clenching speed, and the EEG activity in ten human subjects. Study participants were asked to perform and imagine clenching of the left hand and right hand at various speeds. The EEG activity in the alpha (8-12 Hz) and beta (18-28 Hz) frequency bands were found to be linearly correlated with the speed of imagery clenching. Similar parametric modulation was also found during the execution of hand movements. A single equation relating the EEG activity to the speed and the hand (left versus right) was developed. This equation, which contained a linear independent combination of the two parameters, described the time-varying neural activity during the tasks. Based on the model, a regression approach was developed to decode the two parameters from the multiple-channel EEG signals. We demonstrated the continuous decoding of dynamic hand and speed information of the imagined clenching. In particular, the time-varying clenching speed was reconstructed in a bell-shaped profile. Our findings suggest an application to providing continuous and complex control of noninvasive brain-computer interface for movement-impaired paralytics.

摘要

在非人类灵长类动物对手部伸展或绘图任务的研究中,已经证明了初级运动皮层与运动运动学之间的关系。研究表明,伴随运动或在运动之前发生的神经活动编码了方向、速度和其他信息。在这里,我们研究了想象和实际手部运动(即握拳速度)之间的运动学关系,以及十名人类受试者的脑电图活动。研究参与者被要求以各种速度执行和想象左手和右手的握拳。发现 alpha(8-12 Hz)和 beta(18-28 Hz)频段的脑电图活动与想象握拳的速度呈线性相关。在手部运动执行过程中也发现了类似的参数调制。开发了一个将脑电图活动与速度和手(左手与右手)相关联的单一方程。这个方程包含了这两个参数的线性独立组合,描述了任务期间的时变神经活动。基于该模型,开发了一种回归方法,从多通道脑电图信号中解码这两个参数。我们演示了从想象中的握拳的动态手部和速度信息的连续解码。特别是,重建了时变握拳速度的钟形轮廓。我们的发现表明,它可以应用于为运动障碍的瘫痪患者提供连续和复杂的非侵入性脑机接口控制。

相似文献

1
Relationship between speed and EEG activity during imagined and executed hand movements.
J Neural Eng. 2010 Apr;7(2):26001. doi: 10.1088/1741-2560/7/2/026001. Epub 2010 Feb 18.
3
Single-Trial Recognition of Imagined Forces and Speeds of Hand Clenching Based on Brain Topography and Brain Network.
Brain Topogr. 2019 Mar;32(2):240-254. doi: 10.1007/s10548-018-00696-3. Epub 2018 Dec 31.
4
Decoding speed of imagined hand movement from EEG.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:142-5. doi: 10.1109/IEMBS.2010.5627414.
5
Imagined Hand Clenching Force and Speed Modulate Brain Activity and Are Classified by NIRS Combined With EEG.
IEEE Trans Neural Syst Rehabil Eng. 2017 Sep;25(9):1641-1652. doi: 10.1109/TNSRE.2016.2627809. Epub 2016 Nov 10.
6
Calculation and Analysis of Microstate Related to Variation in Executed and Imagined Movement of Force of Hand Clenching.
Comput Intell Neurosci. 2018 Aug 27;2018:9270685. doi: 10.1155/2018/9270685. eCollection 2018.
7
Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
J Neural Eng. 2009 Aug;6(4):046005. doi: 10.1088/1741-2560/6/4/046005. Epub 2009 Jun 25.
8
Modulation of event-related desynchronization during kinematic and kinetic hand movements.
J Neuroeng Rehabil. 2014 May 30;11:90. doi: 10.1186/1743-0003-11-90.
9
Decoding Imagined 3D Hand Movement Trajectories From EEG: Evidence to Support the Use of Mu, Beta, and Low Gamma Oscillations.
Front Neurosci. 2018 Mar 20;12:130. doi: 10.3389/fnins.2018.00130. eCollection 2018.

引用本文的文献

1
Dual 500-μs wide pulse neuromuscular electrical stimulation enhancing sensorimotor cortical excitability.
Front Hum Neurosci. 2025 Jul 28;19:1629003. doi: 10.3389/fnhum.2025.1629003. eCollection 2025.
3
A neuroadaptive interface shows intentional control alters the experience of time.
Sci Rep. 2025 Mar 19;15(1):9495. doi: 10.1038/s41598-025-93204-0.
4
Decoding the brain-machine interaction for upper limb assistive technologies: advances and challenges.
Front Hum Neurosci. 2025 Feb 6;19:1532783. doi: 10.3389/fnhum.2025.1532783. eCollection 2025.
5
6
Decoding of movement-related cortical potentials at different speeds.
Cogn Neurodyn. 2024 Dec;18(6):3859-3872. doi: 10.1007/s11571-024-10164-3. Epub 2024 Sep 1.
7
Non-Invasive Brain-Computer Interfaces: State of the Art and Trends.
IEEE Rev Biomed Eng. 2025;18:26-49. doi: 10.1109/RBME.2024.3449790. Epub 2025 Jan 28.
8
Exploring empathic engagement in immersive media: An EEG study on mu rhythm suppression in VR.
PLoS One. 2024 May 17;19(5):e0303553. doi: 10.1371/journal.pone.0303553. eCollection 2024.
9
Enhancing Brain-Computer Interface Performance by Incorporating Brain-to-Brain Coupling.
Cyborg Bionic Syst. 2024 Apr 25;5:0116. doi: 10.34133/cbsystems.0116. eCollection 2024.
10
Beta oscillation is an indicator for two patterns of sensorimotor synchronization.
Psych J. 2024 Jun;13(3):347-354. doi: 10.1002/pchj.696. Epub 2023 Oct 31.

本文引用的文献

2
Decoding center-out hand velocity from MEG signals during visuomotor adaptation.
Neuroimage. 2009 Oct 1;47(4):1691-700. doi: 10.1016/j.neuroimage.2009.06.023. Epub 2009 Jun 16.
3
Goal selection versus process control in a brain-computer interface based on sensorimotor rhythms.
J Neural Eng. 2009 Feb;6(1):016005. doi: 10.1088/1741-2560/6/1/016005. Epub 2009 Jan 20.
5
Cortical control of a prosthetic arm for self-feeding.
Nature. 2008 Jun 19;453(7198):1098-101. doi: 10.1038/nature06996. Epub 2008 May 28.
6
Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia.
J Neurosci. 2008 Jan 30;28(5):1163-78. doi: 10.1523/JNEUROSCI.4415-07.2008.
7
Hand movement direction decoded from MEG and EEG.
J Neurosci. 2008 Jan 23;28(4):1000-8. doi: 10.1523/JNEUROSCI.5171-07.2008.
8
Classification of motor imagery by means of cortical current density estimation and Von Neumann entropy.
J Neural Eng. 2007 Jun;4(2):17-25. doi: 10.1088/1741-2560/4/2/002. Epub 2007 Jan 24.
9
Brain-controlled interfaces: movement restoration with neural prosthetics.
Neuron. 2006 Oct 5;52(1):205-20. doi: 10.1016/j.neuron.2006.09.019.
10
A high-performance brain-computer interface.
Nature. 2006 Jul 13;442(7099):195-8. doi: 10.1038/nature04968.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验