Suppr超能文献

基于感觉运动节律的脑机接口中的目标选择与过程控制

Goal selection versus process control in a brain-computer interface based on sensorimotor rhythms.

作者信息

Royer Audrey S, He Bin

机构信息

Graduate Program in Neuroscience, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

J Neural Eng. 2009 Feb;6(1):016005. doi: 10.1088/1741-2560/6/1/016005. Epub 2009 Jan 20.

Abstract

In a brain-computer interface (BCI) utilizing a process control strategy, the signal from the cortex is used to control the fine motor details normally handled by other parts of the brain. In a BCI utilizing a goal selection strategy, the signal from the cortex is used to determine the overall end goal of the user, and the BCI controls the fine motor details. A BCI based on goal selection may be an easier and more natural system than one based on process control. Although goal selection in theory may surpass process control, the two have never been directly compared, as we are reporting here. Eight young healthy human subjects participated in the present study, three trained and five naïve in BCI usage. Scalp-recorded electroencephalograms (EEG) were used to control a computer cursor during five different paradigms. The paradigms were similar in their underlying signal processing and used the same control signal. However, three were based on goal selection, and two on process control. For both the trained and naïve populations, goal selection had more hits per run, was faster, more accurate (for seven out of eight subjects) and had a higher information transfer rate than process control. Goal selection outperformed process control in every measure studied in the present investigation.

摘要

在采用过程控制策略的脑机接口(BCI)中,来自皮层的信号用于控制通常由大脑其他部分处理的精细运动细节。在采用目标选择策略的BCI中,来自皮层的信号用于确定用户的总体最终目标,而BCI则控制精细运动细节。基于目标选择的BCI可能比基于过程控制的BCI更容易、更自然。尽管理论上目标选择可能优于过程控制,但正如我们在此报告的那样,两者从未被直接比较过。八名年轻健康的人类受试者参与了本研究,其中三名接受过BCI使用培训,五名未接受过培训。在五种不同的范式中,头皮记录的脑电图(EEG)被用于控制计算机光标。这些范式在其基础信号处理方面相似,并使用相同的控制信号。然而,其中三种基于目标选择,两种基于过程控制。对于受过培训和未受过培训的人群,目标选择每次运行的命中次数更多、速度更快、更准确(八名受试者中有七名),并且比过程控制具有更高的信息传输率。在本研究中所考察的各项指标上,目标选择均优于过程控制。

相似文献

1
Goal selection versus process control in a brain-computer interface based on sensorimotor rhythms.
J Neural Eng. 2009 Feb;6(1):016005. doi: 10.1088/1741-2560/6/1/016005. Epub 2009 Jan 20.
2
Goal selection versus process control while learning to use a brain-computer interface.
J Neural Eng. 2011 Jun;8(3):036012. doi: 10.1088/1741-2560/8/3/036012. Epub 2011 Apr 21.
3
A sensorimotor rhythm based goal selection brain-computer interface.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:575-7. doi: 10.1109/IEMBS.2009.5332384.
4
Brain-computer interface (BCI) operation: signal and noise during early training sessions.
Clin Neurophysiol. 2005 Jan;116(1):56-62. doi: 10.1016/j.clinph.2004.07.004.
5
The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects.
IEEE Trans Biomed Eng. 2008 Oct;55(10):2452-62. doi: 10.1109/TBME.2008.923152.
6
Towards a user-friendly brain-computer interface: initial tests in ALS and PLS patients.
Clin Neurophysiol. 2010 Aug;121(8):1293-303. doi: 10.1016/j.clinph.2010.02.157. Epub 2010 Mar 29.
7
The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects.
Neuroimage. 2007 Aug 15;37(2):539-50. doi: 10.1016/j.neuroimage.2007.01.051. Epub 2007 Mar 1.
8
BCI demographics II: how many (and what kinds of) people can use a high-frequency SSVEP BCI?
IEEE Trans Neural Syst Rehabil Eng. 2011 Jun;19(3):232-9. doi: 10.1109/TNSRE.2011.2121919. Epub 2011 Mar 17.
9
Neurofeedback-based motor imagery training for brain-computer interface (BCI).
J Neurosci Methods. 2009 Apr 30;179(1):150-6. doi: 10.1016/j.jneumeth.2009.01.015. Epub 2009 Jan 29.
10
Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance.
IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):372-9. doi: 10.1109/TNSRE.2005.848627.

引用本文的文献

2
Target-directed motor imagery of the lower limb enhances event-related desynchronization.
PLoS One. 2017 Sep 19;12(9):e0184245. doi: 10.1371/journal.pone.0184245. eCollection 2017.
3
Closed-loop brain-machine-body interfaces for noninvasive rehabilitation of movement disorders.
Ann Biomed Eng. 2014 Aug;42(8):1573-93. doi: 10.1007/s10439-014-1032-6. Epub 2014 May 15.
5
Z-score linear discriminant analysis for EEG based brain-computer interfaces.
PLoS One. 2013 Sep 13;8(9):e74433. doi: 10.1371/journal.pone.0074433. eCollection 2013.
6
Active training paradigm for motor imagery BCI.
Exp Brain Res. 2012 Jun;219(2):245-54. doi: 10.1007/s00221-012-3084-x. Epub 2012 Apr 5.
7
Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface.
PLoS One. 2011;6(10):e26322. doi: 10.1371/journal.pone.0026322. Epub 2011 Oct 26.
8
Goal selection versus process control while learning to use a brain-computer interface.
J Neural Eng. 2011 Jun;8(3):036012. doi: 10.1088/1741-2560/8/3/036012. Epub 2011 Apr 21.
9
EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies.
IEEE Trans Neural Syst Rehabil Eng. 2010 Dec;18(6):581-9. doi: 10.1109/TNSRE.2010.2077654. Epub 2010 Sep 27.
10
Optimal spacing of surface electrode arrays for brain-machine interface applications.
J Neural Eng. 2010 Apr;7(2):26004. doi: 10.1088/1741-2560/7/2/026004. Epub 2010 Mar 2.

本文引用的文献

2
The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects.
IEEE Trans Biomed Eng. 2008 Oct;55(10):2452-62. doi: 10.1109/TBME.2008.923152.
3
A scanning protocol for a sensorimotor rhythm-based brain-computer interface.
Biol Psychol. 2009 Feb;80(2):169-75. doi: 10.1016/j.biopsycho.2008.08.004. Epub 2008 Aug 22.
4
Emulation of computer mouse control with a noninvasive brain-computer interface.
J Neural Eng. 2008 Jun;5(2):101-10. doi: 10.1088/1741-2560/5/2/001. Epub 2008 Mar 5.
5
Classification of motor imagery by means of cortical current density estimation and Von Neumann entropy.
J Neural Eng. 2007 Jun;4(2):17-25. doi: 10.1088/1741-2560/4/2/002. Epub 2007 Jan 24.
6
A mu-rhythm matched filter for continuous control of a brain-computer interface.
IEEE Trans Biomed Eng. 2007 Feb;54(2):273-80. doi: 10.1109/TBME.2006.886661.
7
Brain-computer interfaces as new brain output pathways.
J Physiol. 2007 Mar 15;579(Pt 3):613-9. doi: 10.1113/jphysiol.2006.125948. Epub 2007 Jan 25.
8
Online control of a brain-computer interface using phase synchronization.
IEEE Trans Biomed Eng. 2006 Dec;53(12 Pt 1):2501-6. doi: 10.1109/TBME.2006.881775.
9
A high-performance brain-computer interface.
Nature. 2006 Jul 13;442(7099):195-8. doi: 10.1038/nature04968.
10
Neuronal ensemble control of prosthetic devices by a human with tetraplegia.
Nature. 2006 Jul 13;442(7099):164-71. doi: 10.1038/nature04970.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验