Suppr超能文献

从脑电图中解码想象的三维手部运动轨迹:支持使用μ、β和低伽马振荡的证据

Decoding Imagined 3D Hand Movement Trajectories From EEG: Evidence to Support the Use of Mu, Beta, and Low Gamma Oscillations.

作者信息

Korik Attila, Sosnik Ronen, Siddique Nazmul, Coyle Damien

机构信息

Intelligent Systems Research Centre, Ulster University, Derry, United Kingdom.

Hybrid BCI Lab, Holon Institute of Technology, Holon, Israel.

出版信息

Front Neurosci. 2018 Mar 20;12:130. doi: 10.3389/fnins.2018.00130. eCollection 2018.

Abstract

To date, motion trajectory prediction (MTP) of a limb from non-invasive electroencephalography (EEG) has relied, primarily, on band-pass filtered samples of EEG potentials i.e., the potential time-series model. Most MTP studies involve decoding 2D and 3D arm movements i.e., executed arm movements. Decoding of observed or imagined 3D movements has been demonstrated with limited success and only reported in a few studies. MTP studies normally use EEG potentials filtered in the low delta (~1 Hz) band for reconstructing the trajectory of an executed or an imagined/observed movement. In contrast to MTP, multiclass classification based sensorimotor rhythm brain-computer interfaces aim to classify movements using the power spectral density of mu (8-12 Hz) and beta (12-28 Hz) bands. We investigated if replacing the standard potentials time-series input with a power spectral density based bandpower time-series improves trajectory decoding accuracy of kinesthetically imagined 3D hand movement tasks (i.e., imagined 3D trajectory of the hand joint) and whether imagined 3D hand movements kinematics are encoded also in mu and beta bands. Twelve naïve subjects were asked to generate or imagine generating pointing movements with their right dominant arm to four targets distributed in 3D space in synchrony with an auditory cue (beep). Using the bandpower time-series based model, the highest decoding accuracy for motor execution was observed in mu and beta bands whilst for imagined movements the low gamma (28-40 Hz) band was also observed to improve decoding accuracy for some subjects. Moreover, for both (executed and imagined) movements, the bandpower time-series model with mu, beta, and low gamma bands produced significantly higher reconstruction accuracy than the commonly used potential time-series model and delta oscillations. Contrary to many studies that investigated only executed hand movements and recommend using delta oscillations for decoding directional information of a single limb joint, our findings suggest that motor kinematics for imagined movements are reflected mostly in power spectral density of mu, beta and low gamma bands, and that these bands may be most informative for decoding 3D trajectories of imagined limb movements.

摘要

迄今为止,基于非侵入性脑电图(EEG)的肢体运动轨迹预测(MTP)主要依赖于EEG电位的带通滤波样本,即电位时间序列模型。大多数MTP研究涉及对二维和三维手臂运动(即已执行的手臂运动)进行解码。对观察到的或想象中的三维运动进行解码的研究取得的成功有限,且仅有少数研究报道过。MTP研究通常使用在低δ(~1Hz)频段滤波的EEG电位来重建已执行的或想象/观察到的运动轨迹。与MTP不同,基于多类分类的感觉运动节律脑机接口旨在使用μ(8 - 12Hz)和β(12 - 28Hz)频段的功率谱密度对运动进行分类。我们研究了用基于功率谱密度的带功率时间序列替换标准电位时间序列输入是否能提高对动觉想象的三维手部运动任务(即手部关节的想象三维轨迹)的轨迹解码精度,以及想象中的三维手部运动运动学是否也编码在μ和β频段中。12名未受过训练的受试者被要求用其右优势手臂与听觉提示(哔声)同步地向分布在三维空间中的四个目标生成或想象生成指向运动。使用基于带功率时间序列的模型,在μ和β频段观察到运动执行的最高解码精度,而对于想象运动,低γ(28 - 40Hz)频段也被观察到对一些受试者提高了解码精度。此外,对于(已执行的和想象的)运动,包含μ、β和低γ频段的带功率时间序列模型产生的重建精度显著高于常用的电位时间序列模型和δ振荡。与许多仅研究已执行手部运动并建议使用δ振荡来解码单个肢体关节方向信息的研究相反,我们的研究结果表明,想象运动的运动学主要反映在μ、β和低γ频段的功率谱密度中,并且这些频段可能对解码想象肢体运动的三维轨迹最具信息性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c21/5869206/7f51eb1d7ef6/fnins-12-00130-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验