Suppr超能文献

通过皮层电流密度估计和冯·诺依曼熵对运动想象进行分类。

Classification of motor imagery by means of cortical current density estimation and Von Neumann entropy.

作者信息

Kamousi Baharan, Amini Ali Nasiri, He Bin

机构信息

Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

J Neural Eng. 2007 Jun;4(2):17-25. doi: 10.1088/1741-2560/4/2/002. Epub 2007 Jan 24.

Abstract

The goal of the present study is to employ the source imaging methods such as cortical current density estimation for the classification of left- and right-hand motor imagery tasks, which may be used for brain-computer interface (BCI) applications. The scalp recorded EEG was first preprocessed by surface Laplacian filtering, time-frequency filtering, noise normalization and independent component analysis. Then the cortical imaging technique was used to solve the EEG inverse problem. Cortical current density distributions of left and right trials were classified from each other by exploiting the concept of Von Neumann entropy. The proposed method was tested on three human subjects (180 trials each) and a maximum accuracy of 91.5% and an average accuracy of 88% were obtained. The present results confirm the hypothesis that source analysis methods may improve accuracy for classification of motor imagery tasks. The present promising results using source analysis for classification of motor imagery enhances our ability of performing source analysis from single trial EEG data recorded on the scalp, and may have applications to improved BCI systems.

摘要

本研究的目标是采用诸如皮层电流密度估计等源成像方法对左右手运动想象任务进行分类,这些方法可用于脑机接口(BCI)应用。首先,通过表面拉普拉斯滤波、时频滤波、噪声归一化和独立成分分析对头皮记录的脑电图进行预处理。然后,使用皮层成像技术解决脑电图逆问题。利用冯·诺依曼熵的概念对左右试验的皮层电流密度分布进行相互分类。该方法在三名人类受试者身上进行了测试(每人180次试验),获得了91.5%的最高准确率和88%的平均准确率。目前的结果证实了源分析方法可能提高运动想象任务分类准确率的假设。目前使用源分析对运动想象进行分类的有前景的结果提高了我们从头皮记录的单次试验脑电图数据进行源分析的能力,并且可能应用于改进的脑机接口系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验