Bombardieri E, Coliva A, Maccauro M, Seregni E, Orunesu E, Chiti A, Lucignani G
Division of Nuclear Medicine, Fondazione IRCCS "Istituto Nazionale dei Tumori", Milan, Italy.
Q J Nucl Med Mol Imaging. 2010 Feb;54(1):3-15.
Nuclear medicine can image some tumors by means of receptor specific radiopharmaceuticals, and offers the possibility to characterize cancer through the detection of its receptor expression. This is the case of neuroendocrine tumours (NETs), that are visualized by different radiolabelled somatostatin analogues that bind 5 distinct somatostatin receptor types (named sstr1-5) that show different tissue distribution. The subtypes sstr2 and sstr5 are the most commonly expressed in NETs. Until now the most widely used radiolabelled somatostatin analogue for planar and single photon emission computed tomography (SPECT) has been [(111)In]pentetreotide, because of its commercial availability. Other analogues labelled with gamma emitting radionuclides are [(99m)Tc]EDDA/HYNIC-TOC, [(99m)Tc]P829, [(111)In]DOTA-lanreotide, [(111)In]DOTA-NOC-ATE, [(111)In]DOTA-BOC-ATE. However, these compounds have not been successful for the routine use. Moreover, NETs express various receptors that can be depicted by different radiopharmaceuticals, such as [(123)I]VIP and [(111)In]GLP-1. Besides this, some precursors of the catecholamines metabolism, as meta-iodo-benzyl-guanidine (MIBG), labelled with (123)I or (131)I, accumulates in neuroendocrine tissues, in particular those of sympathoadrenal lineage. MIBG scintigraphy is currently indicated for neuroblastoma, paraganglioma and phaeocromocitoma. An impressive technological progress has been achieved recently with PET and, in particular, with the development of hybrid instrumentations (PET/CT) combining nuclear imaging with radiological imaging providing both functional and morphologic information. Among positron emitting tracers, the [(18)F]FDG is the most diffuse in oncology, but other more effective tracers are available for NETs, such as the analogues labelled with 68Ga. The diagnostic sensitivity and accuracy of these technology is superior to that of gamma emitting radiopharmaceuticals, but the fact that they are not still registered limits their use in the clinical practice. This overview summarizes the state of art of NETs imaging, focusing the attention mainly on gamma-emitting tracers.
核医学可通过受体特异性放射性药物对某些肿瘤进行成像,并提供通过检测肿瘤受体表达来对癌症进行特征描述的可能性。神经内分泌肿瘤(NETs)就是这种情况,不同的放射性标记生长抑素类似物可对其进行可视化,这些类似物可结合5种不同的生长抑素受体类型(命名为sstr1 - 5),它们具有不同的组织分布。sstr2和sstr5亚型是NETs中最常表达的。到目前为止,由于其商业可用性,用于平面和单光子发射计算机断层扫描(SPECT)的最广泛使用的放射性标记生长抑素类似物是[(111)In]喷曲肽。其他用发射γ射线的放射性核素标记的类似物有[(99m)Tc]EDDA/HYNIC - TOC、[(99m)Tc]P829、[(111)In]DOTA - 兰瑞肽、[(111)In]DOTA - NOC - ATE、[(111)In]DOTA - BOC - ATE。然而,这些化合物尚未成功用于常规使用。此外,NETs表达多种受体,可通过不同的放射性药物进行描绘,如[(123)I]血管活性肠肽(VIP)和[(111)In]胰高血糖素样肽 - 1(GLP - 1)。除此之外,儿茶酚胺代谢的一些前体,如用(123)I或(131)I标记的间碘苄胍(MIBG),会在神经内分泌组织中蓄积,特别是那些交感肾上腺谱系的组织。MIBG闪烁扫描目前适用于神经母细胞瘤、副神经节瘤和嗜铬细胞瘤。最近,正电子发射断层扫描(PET),特别是结合核成像与放射成像以提供功能和形态学信息的混合成像设备(PET/CT)的发展取得了令人瞩目的技术进步。在正电子发射示踪剂中,[(18)F]氟代脱氧葡萄糖(FDG)在肿瘤学中应用最为广泛,但也有其他更有效的示踪剂可用于NETs,如用68Ga标记的类似物。这些技术的诊断敏感性和准确性优于发射γ射线的放射性药物,但它们尚未获批这一事实限制了它们在临床实践中的应用。本综述总结了NETs成像的现状,主要关注发射γ射线的示踪剂。