Suppr超能文献

利用人工神经网络计算具有化学和应变场远程效应的刚性格点原子动力学蒙特卡罗模拟的适当能垒。

Calculation of proper energy barriers for atomistic kinetic Monte Carlo simulations on rigid lattice with chemical and strain field long-range effects using artificial neural networks.

机构信息

Université Libre de Bruxelles (ULB), Physique des Solides Irradiés et des Nanostructures (PSIN), boulevard du Triomphe CP234, Brussels 1050, Belgium.

出版信息

J Chem Phys. 2010 Feb 21;132(7):074507. doi: 10.1063/1.3298990.

Abstract

In this paper we take a few steps further in the development of an approach based on the use of an artificial neural network (ANN) to introduce long-range chemical effects and zero temperature relaxation (elastic strain) effects in a rigid lattice atomistic kinetic Monte Carlo (AKMC) model. The ANN is trained to predict the vacancy migration energies as calculated given an interatomic potential with the nudged elastic band method, as functions of the local atomic environment. The kinetics of a single-vacancy migration is thus predicted as accurately as possible, within the limits of the given interatomic potential. The detailed procedure to apply this method is described and analyzed in detail. A novel ANN training algorithm is proposed to deal with the necessarily large number of input variables to be taken into account in the mathematical regression of the migration energies. The application of the ANN-based AKMC method to the simulation of a thermal annealing experiment in Fe-20%Cr alloy is reported. The results obtained are found to be in better agreement with experiments, as compared to already published simulations, where no atomic relaxation was taken into account and chemical effects were only heuristically allowed for.

摘要

在本文中,我们在开发一种方法方面又向前迈进了几步,该方法基于使用人工神经网络 (ANN) 将远程化学效应和零温度弛豫(弹性应变)效应引入刚性晶格原子动力学蒙特卡罗 (AKMC) 模型中。该 ANN 经过训练,可以根据使用 nudged 弹性带方法计算的原子间势能,将空位迁移能预测为局部原子环境的函数。在给定的原子间势能范围内,尽可能准确地预测单个空位迁移的动力学。描述并详细分析了应用此方法的详细过程。提出了一种新的 ANN 训练算法,以处理在迁移能的数学回归中必须考虑的大量输入变量。报道了将基于 ANN 的 AKMC 方法应用于 Fe-20%Cr 合金的热退火实验模拟。与已经发表的模拟相比,所获得的结果与实验更吻合,因为在已经发表的模拟中,没有考虑原子弛豫,并且仅启发式地允许存在化学效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验