Suppr超能文献

统计温度蒙特卡罗算法和分子动力学算法。

Statistical-temperature Monte Carlo and molecular dynamics algorithms.

作者信息

Kim Jaegil, Straub John E, Keyes Thomas

机构信息

Department of Chemistry, Boston University, Boston, MA 02215, USA.

出版信息

Phys Rev Lett. 2006 Aug 4;97(5):050601. doi: 10.1103/PhysRevLett.97.050601. Epub 2006 Aug 1.

Abstract

A simulation method is presented that achieves a flat energy distribution by updating the statistical temperature instead of the density of states in Wang-Landau sampling. A novel molecular dynamics algorithm (STMD) applicable to complex systems and a Monte Carlo algorithm are developed from this point of view. Accelerated convergence for large energy bins, essential for large systems, is demonstrated in tests on the Ising model, the Lennard-Jones fluid, and bead models of proteins. STMD shows a superior ability to find local minima in proteins and new global minima are found for the 55 bead AB model in two and three dimensions. Calculations of the occupation probabilities of individual protein inherent structures provide new insights into folding and misfolding.

摘要

提出了一种模拟方法,该方法通过更新统计温度而非王-兰道抽样中的态密度来实现平坦的能量分布。从这一角度出发,开发了一种适用于复杂系统的新型分子动力学算法(STMD)和一种蒙特卡罗算法。在伊辛模型、 Lennard-Jones 流体和蛋白质的珠子模型测试中,证明了对于大型系统至关重要的大能量区间的加速收敛。STMD 在寻找蛋白质局部最小值方面表现出卓越能力,并且在二维和三维的 55 珠子 AB 模型中发现了新的全局最小值。对单个蛋白质固有结构占据概率的计算为折叠和错误折叠提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验