Suppr超能文献

揭示实时情绪反应:基于心跳动态的个性化评估。

Revealing real-time emotional responses: a personalized assessment based on heartbeat dynamics.

作者信息

Valenza Gaetano, Citi Luca, Lanatá Antonio, Scilingo Enzo Pasquale, Barbieri Riccardo

机构信息

1] Neuroscience Statistics Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA [2] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA [3] Department of Information Engineering and Research Centre E Piaggio, University of Pisa, Pisa, Italy.

1] Neuroscience Statistics Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA [2] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA [3] School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO43SQ, UK.

出版信息

Sci Rep. 2014 May 21;4:4998. doi: 10.1038/srep04998.

Abstract

Emotion recognition through computational modeling and analysis of physiological signals has been widely investigated in the last decade. Most of the proposed emotion recognition systems require relatively long-time series of multivariate records and do not provide accurate real-time characterizations using short-time series. To overcome these limitations, we propose a novel personalized probabilistic framework able to characterize the emotional state of a subject through the analysis of heartbeat dynamics exclusively. The study includes thirty subjects presented with a set of standardized images gathered from the international affective picture system, alternating levels of arousal and valence. Due to the intrinsic nonlinearity and nonstationarity of the RR interval series, a specific point-process model was devised for instantaneous identification considering autoregressive nonlinearities up to the third-order according to the Wiener-Volterra representation, thus tracking very fast stimulus-response changes. Features from the instantaneous spectrum and bispectrum, as well as the dominant Lyapunov exponent, were extracted and considered as input features to a support vector machine for classification. Results, estimating emotions each 10 seconds, achieve an overall accuracy in recognizing four emotional states based on the circumplex model of affect of 79.29%, with 79.15% on the valence axis, and 83.55% on the arousal axis.

摘要

在过去十年中,通过对生理信号进行计算建模和分析来识别情绪的研究受到了广泛关注。大多数已提出的情绪识别系统需要较长时间的多变量记录序列,并且无法利用短时间序列提供准确的实时特征描述。为了克服这些局限性,我们提出了一种新颖的个性化概率框架,该框架能够仅通过分析心跳动态来表征个体的情绪状态。该研究纳入了30名受试者,他们观看了一组从国际情感图片系统中收集的标准化图像,这些图像具有不同程度的唤醒度和效价。由于RR间期序列具有固有的非线性和非平稳性,根据维纳-沃尔泰拉表示法,设计了一种特定的点过程模型,用于考虑高达三阶的自回归非线性的瞬时识别,从而跟踪非常快速的刺激-反应变化。从瞬时频谱和双谱以及主导李雅普诺夫指数中提取特征,并将其作为支持向量机分类的输入特征。结果表明,每10秒估计一次情绪,基于情感环状模型识别四种情绪状态的总体准确率达到79.29%,在效价轴上的准确率为79.15%,在唤醒度轴上的准确率为83.55%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70e6/4028901/f550c04beb9b/srep04998-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验