Suppr超能文献

一种具有ε-不敏感损失函数的混合ART-GRNN在线学习神经网络。

A hybrid ART-GRNN online learning neural network with a epsilon -insensitive loss function.

作者信息

Yap Keem Siah, Lim Chee Peng, Abidin Izham Zainal

机构信息

College of Engineering, Universiti Tenaga Nasional, Selangor, Malaysia.

出版信息

IEEE Trans Neural Netw. 2008 Sep;19(9):1641-6. doi: 10.1109/TNN.2008.2000992.

Abstract

In this brief, a new neural network model called generalized adaptive resonance theory (GART) is introduced. GART is a hybrid model that comprises a modified Gaussian adaptive resonance theory (MGA) and the generalized regression neural network (GRNN). It is an enhanced version of the GRNN, which preserves the online learning properties of adaptive resonance theory (ART). A series of empirical studies to assess the effectiveness of GART in classification, regression, and time series prediction tasks is conducted. The results demonstrate that GART is able to produce good performances as compared with those of other methods, including the online sequential extreme learning machine (OSELM) and sequential learning radial basis function (RBF) neural network models.

摘要

在本简报中,介绍了一种名为广义自适应共振理论(GART)的新神经网络模型。GART是一种混合模型,它由改进的高斯自适应共振理论(MGA)和广义回归神经网络(GRNN)组成。它是GRNN的增强版本,保留了自适应共振理论(ART)的在线学习特性。进行了一系列实证研究,以评估GART在分类、回归和时间序列预测任务中的有效性。结果表明,与其他方法相比,包括在线序列极限学习机(OSELM)和序列学习径向基函数(RBF)神经网络模型,GART能够产生良好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验