Xia Tian, Tao Dacheng, Mei Tao, Zhang Yongdong
Center for Advanced Computing Technology Research, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.
IEEE Trans Syst Man Cybern B Cybern. 2010 Dec;40(6):1438-46. doi: 10.1109/TSMCB.2009.2039566. Epub 2010 Feb 17.
In computer vision and multimedia search, it is common to use multiple features from different views to represent an object. For example, to well characterize a natural scene image, it is essential to find a set of visual features to represent its color, texture, and shape information and encode each feature into a vector. Therefore, we have a set of vectors in different spaces to represent the image. Conventional spectral-embedding algorithms cannot deal with such datum directly, so we have to concatenate these vectors together as a new vector. This concatenation is not physically meaningful because each feature has a specific statistical property. Therefore, we develop a new spectral-embedding algorithm, namely, multiview spectral embedding (MSE), which can encode different features in different ways, to achieve a physically meaningful embedding. In particular, MSE finds a low-dimensional embedding wherein the distribution of each view is sufficiently smooth, and MSE explores the complementary property of different views. Because there is no closed-form solution for MSE, we derive an alternating optimization-based iterative algorithm to obtain the low-dimensional embedding. Empirical evaluations based on the applications of image retrieval, video annotation, and document clustering demonstrate the effectiveness of the proposed approach.
在计算机视觉和多媒体搜索中,使用来自不同视角的多个特征来表示一个对象是很常见的。例如,为了很好地刻画一幅自然场景图像,找到一组视觉特征来表示其颜色、纹理和形状信息并将每个特征编码为一个向量是至关重要的。因此,我们有一组在不同空间中的向量来表示该图像。传统的谱嵌入算法无法直接处理这样的数据,所以我们不得不将这些向量连接在一起形成一个新的向量。这种连接在物理意义上并不合理,因为每个特征都有特定的统计特性。因此,我们开发了一种新的谱嵌入算法,即多视角谱嵌入(MSE),它可以以不同的方式对不同特征进行编码,以实现具有物理意义的嵌入。具体来说,MSE找到一个低维嵌入,其中每个视角的分布足够平滑,并且MSE探索不同视角的互补特性。由于MSE没有闭式解,我们推导了一种基于交替优化的迭代算法来获得低维嵌入。基于图像检索、视频标注和文档聚类应用的实证评估证明了所提方法的有效性。