Institute of Scientific and Industrial Research, Osaka University, CREST, Japan Science and Technology Agency, Ibaraki, Osaka, Japan.
Nanotechnology. 2010 Mar 19;21(11):115202. doi: 10.1088/0957-4484/21/11/115202. Epub 2010 Feb 22.
An ultrathin silicon dioxide (SiO(2)) layer with 0.65-1.5 nm thickness has been formed by approximately 100% nitric acid (HNO(3)) vapor oxidation, and its electrical characteristics and physical properties are investigated. The oxidation kinetics follows a parabolic law except for the ultrathin (<or=0.8 nm) region, indicating that diffusion of oxidizing species (i.e. oxygen atoms generated by decomposition of approximately 100% HNO(3) vapor) through a growing SiO(2) layer is the rate-determining step. The diffusion activation energy for HNO(3) vapor oxidation is 0.14 eV, much lower than that of thermal oxidation of 1.24 eV. The leakage current density for the 0.65 nm SiO(2) layer formed by HNO(3) vapor oxidation is lower by approximately one order of magnitude than that for a thermal oxide layer with the same thickness. The low leakage current density is attributed to (i) the atomically flat SiO(2)/Si interface and uniform thickness of the ultrathin SiO(2) layer, (ii) the low concentration of suboxide species and the low interface state density and (iii) the high atomic density of the SiO(2) layer, which leads to a high band discontinuity energy at the SiO(2)/Si interface. The leakage current density is further decreased by PMA at 250 degrees C in 5 vol% H(2) atmosphere.
已经通过约 100% 硝酸(HNO(3))蒸气氧化形成了厚度为 0.65-1.5nm 的超薄二氧化硅(SiO(2))层,并对其电学特性和物理性质进行了研究。氧化动力学除了超薄(<或=0.8nm)区域外遵循抛物线规律,表明氧化物种(即由约 100%HNO(3)蒸气分解产生的氧原子)通过生长的 SiO(2)层的扩散是决定速率的步骤。HNO(3)蒸气氧化的扩散激活能为 0.14eV,远低于 1.24eV 的热氧化。通过 HNO(3)蒸气氧化形成的 0.65nmSiO(2)层的漏电流密度比具有相同厚度的热氧化层低约一个数量级。低漏电流密度归因于(i)原子级平坦的 SiO(2)/Si 界面和超薄 SiO(2)层的均匀厚度,(ii)亚氧化物物种浓度低和界面态密度低,以及(iii)SiO(2)层的原子密度高,导致 SiO(2)/Si 界面的能带不连续性能量高。在 5vol%H(2)气氛中于 250°C 下进行 PMA 处理后,漏电流密度进一步降低。