Suppr超能文献

为什么会存在用于感知静态形状和动态形状的平行皮质系统?

Why do parallel cortical systems exist for the perception of static form and moving form?

作者信息

Grossberg S

机构信息

Center for Adaptive Systems, Boston University, Massachusetts 02215.

出版信息

Percept Psychophys. 1991 Feb;49(2):117-41. doi: 10.3758/bf03205033.

Abstract

This article analyzes computational properties that clarify why the parallel cortical systems V1----V2, V1----MT, and V1----V2----MT exist for the perceptual processing of static visual forms and moving visual forms. The article describes a symmetry principle, called FM symmetry, that is predicted to govern the development of these parallel cortical systems by computing all possible ways of symmetrically gating sustained cells with transient cells and organizing these sustained-transient cells into opponent pairs of on-cells and off-cells whose output signals are insensitive to direction of contrast. This symmetric organization explains how the static form system (static BCS) generates emergent boundary segmentations whose outputs are insensitive to direction of contrast and insensitive to direction of motion, whereas the motion form system (motion BCS) generates emergent boundary segmentations whose outputs are insensitive to direction of contrast but sensitive to direction of motion. FM symmetry clarifies why the geometries of static and motion form perception differ--for example, why the opposite orientation of vertical is horizontal (90 degrees), but the opposite direction of up is down (180 degrees). Opposite orientations and directions are embedded in gated dipole opponent processes that are capable of antagonistic rebound. Negative afterimages, such as the MacKay and waterfall illusions, are hereby explained as are aftereffects of long-range apparent motion. These antagonistic rebounds help to control a dynamic balance between complementary perceptual states of resonance and reset. Resonance cooperatively links features into emergent boundary segmentations via positive feedback in a CC loop, and reset terminates a resonance when the image changes, thereby preventing massive smearing of percepts. These complementary preattentive states of resonance and reset are related to analogous states that govern attentive feature integration, learning, and memory search in adaptive resonance theory. The mechanism used in the V1----MT system to generate a wave of apparent motion between discrete flashes may also be used in other cortical systems to generate spatial shifts of attention. The theory suggests how the V1----V2----MT cortical stream helps to compute moving form in depth and how long-range apparent motion of illusory contours occurs. These results collectively argue against vision theories that espouse independent processing modules. Instead, specialized subsystems interact to overcome computational uncertainties and complementary deficiencies, to cooperatively bind features into context-sensitive resonances, and to realize symmetry principles that are predicted to govern the development of the visual cortex.

摘要

本文分析了一些计算属性,这些属性阐明了为何存在平行的皮质系统V1----V2、V1----MT以及V1----V2----MT来进行静态视觉形式和动态视觉形式的感知处理。本文描述了一种称为FM对称的对称原理,预计该原理通过计算用瞬态细胞对称门控持续细胞的所有可能方式,并将这些持续 - 瞬态细胞组织成输出信号对对比度方向不敏感的开细胞和关细胞的对立对,来控制这些平行皮质系统的发育。这种对称组织解释了静态形式系统(静态BCS)如何产生输出对对比度方向和运动方向均不敏感的涌现边界分割,而运动形式系统(运动BCS)如何产生输出对对比度方向不敏感但对运动方向敏感的涌现边界分割。FM对称阐明了为何静态和运动形式感知的几何结构不同——例如,为何垂直方向的相反方向是水平方向(90度),但向上方向的相反方向是向下方向(180度)。相反的方向和取向嵌入在能够产生拮抗反弹的门控偶极对立过程中。负后像,如麦凯和瀑布错觉,以及远距离表观运动的后效在此得到了解释。这些拮抗反弹有助于控制共振和重置的互补感知状态之间的动态平衡。共振通过CC回路中的正反馈将特征协同链接成涌现边界分割,而当图像变化时重置会终止共振,从而防止感知的大量模糊。这些互补的前注意共振和重置状态与自适应共振理论中控制注意特征整合、学习和记忆搜索的类似状态相关。V1----MT系统中用于在离散闪光之间产生表观运动波的机制也可能在其他皮质系统中用于产生注意力的空间转移。该理论表明了V1----V2----MT皮质流如何有助于计算深度中的运动形式以及虚幻轮廓的远距离表观运动是如何发生的。这些结果共同反对了支持独立处理模块的视觉理论。相反,专门的子系统相互作用以克服计算不确定性和互补缺陷,将特征协同绑定到上下文敏感的共振中,并实现预计会控制视觉皮质发育的对称原理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验