Information Génomique et Structurale, CNRS-UPR2589, Institut de Microbiologie de la Méditerranée, Parc Scientifique de Luminy, Marseille, France.
PLoS One. 2010 Feb 19;5(2):e9326. doi: 10.1371/journal.pone.0009326.
DNA supercoiling plays a major role in many cellular functions. The global DNA conformation is however intimately linked to local DNA-DNA interactions influencing both the physical properties and the biological functions of the supercoiled molecule. Juxtaposition of DNA double helices in ubiquitous crossover arrangements participates in multiple functions such as recombination, gene regulation and DNA packaging. However, little is currently known about how the structure and stability of direct DNA-DNA interactions influence the topological state of DNA. Here, a crystallographic analysis shows that due to the intrinsic helical chirality of DNA, crossovers of opposite handedness exhibit markedly different geometries. While right-handed crossovers are self-fitted by sequence-specific groove-backbone interaction and bridging Mg(2+) sites, left-handed crossovers are juxtaposed by groove-groove interaction. Our previous calculations have shown that the different geometries result in differential stabilisation in solution, in the presence of divalent cations. The present study reveals that the various topological states of the cell are associated with different inter-segmental interactions. While the unstable left-handed crossovers are exclusively formed in negatively supercoiled DNA, stable right-handed crossovers constitute the local signature of an unusual topological state in the cell, such as the positively supercoiled or relaxed DNA. These findings not only provide a simple mechanism for locally sensing the DNA topology but also lead to the prediction that, due to their different tertiary intra-molecular interactions, supercoiled molecules of opposite signs must display markedly different physical properties. Sticky inter-segmental interactions in positively supercoiled or relaxed DNA are expected to greatly slow down the slithering dynamics of DNA. We therefore suggest that the intrinsic helical chirality of DNA may have oriented the early evolutionary choices for DNA topology.
DNA 超螺旋在许多细胞功能中起着重要作用。然而,全局 DNA 构象与局部 DNA-DNA 相互作用密切相关,影响超螺旋分子的物理性质和生物学功能。普遍存在的交叉排列的 DNA 双螺旋参与多种功能,如重组、基因调控和 DNA 包装。然而,目前对于直接 DNA-DNA 相互作用的结构和稳定性如何影响 DNA 的拓扑状态知之甚少。在这里,晶体学分析表明,由于 DNA 的固有螺旋手性,左右手交叉具有明显不同的几何形状。虽然右手交叉通过序列特异性沟-骨架相互作用和桥接 Mg(2+)位点自匹配,但左手交叉通过沟-沟相互作用并列。我们之前的计算表明,不同的几何形状导致在存在二价阳离子时在溶液中产生不同的稳定性。本研究揭示了细胞的各种拓扑状态与不同的片段间相互作用有关。虽然不稳定的左手交叉仅在负超螺旋 DNA 中形成,稳定的右手交叉构成了细胞中一种特殊拓扑状态的局部特征,如正超螺旋或松弛 DNA。这些发现不仅为局部感知 DNA 拓扑结构提供了一个简单的机制,而且还预测由于它们不同的三级分子内相互作用,具有相反符号的超螺旋分子必须表现出明显不同的物理性质。正超螺旋或松弛 DNA 中的粘性片段间相互作用预计会大大降低 DNA 的滑溜动力学。因此,我们认为 DNA 的固有螺旋手性可能已经为 DNA 拓扑结构的早期进化选择提供了方向。