Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park, Columbia, Missouri 65211, USA.
Analyst. 2010 Mar;135(3):441-51. doi: 10.1039/b907735a. Epub 2009 Dec 22.
Molecular-scale pore structures, called nanopores, can be assembled by protein ion channels through genetic engineering or be artificially fabricated on solid substrates using fashion nanotechnology. When target molecules interact with the functionalized lumen of a nanopore, they characteristically block the ion pathway. The resulting conductance changes allow for identification of single molecules and quantification of target species in the mixture. In this review, we first overview nanopore-based sensory techniques that have been created for the detection of myriad biomedical targets, from metal ions, drug compounds, and cellular second messengers to proteins and DNA. Then we introduce our recent discoveries in nanopore single molecule detection: (1) using the protein nanopore to study folding/unfolding of the G-quadruplex aptamer; (2) creating a portable and durable biochip that is integrated with a single-protein pore sensor (this chip is compared with recently developed protein pore sensors based on stabilized bilayers on glass nanopore membranes and droplet interface bilayer); and (3) creating a glass nanopore-terminated probe for single-molecule DNA detection, chiral enantiomer discrimination, and identification of the bioterrorist agent ricin with an aptamer-encoded nanopore.
分子尺度的孔隙结构,称为纳米孔,可以通过基因工程在蛋白质离子通道中组装,也可以使用时尚纳米技术在固体基底上人工制造。当目标分子与纳米孔的功能化内腔相互作用时,它们会特征性地阻塞离子通道。由此产生的电导变化可用于识别单个分子并定量混合物中的目标物质。在这篇综述中,我们首先概述了基于纳米孔的传感技术,这些技术已经被用于检测各种生物医学靶标,从金属离子、药物化合物和细胞第二信使到蛋白质和 DNA。然后,我们介绍了我们在纳米孔单分子检测方面的最新发现:(1) 使用蛋白质纳米孔研究 G-四链体适体的折叠/展开;(2) 制作一种便携式、耐用的生物芯片,该芯片与单个蛋白质孔传感器集成(该芯片与最近开发的基于玻璃纳米孔膜和液滴界面双层上稳定双层的蛋白质孔传感器进行了比较);(3) 制作一种玻璃纳米孔终止探针,用于单分子 DNA 检测、手性对映体识别以及用适体编码的纳米孔检测生物恐怖主义剂蓖麻毒素。