Suppr超能文献

使用双能乳腺摄影协议进行乳腺成分成像。

Compositional breast imaging using a dual-energy mammography protocol.

机构信息

Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143, USA.

出版信息

Med Phys. 2010 Jan;37(1):164-74. doi: 10.1118/1.3259715.

Abstract

PURPOSE

Mammography has a low sensitivity in dense breasts due to low contrast between malignant and normal tissue confounded by the predominant water density of the breast. Water is found in both adipose and fibroglandular tissue and constitutes most of the mass of a breast. However, significant protein mass is mainly found in the fibroglandular tissue where most cancers originate. If the protein compartment in a mammogram could be imaged without the influence of water, the sensitivity and specificity of the mammogram may be improved. This article describes a novel approach to dual-energy mammography, full-field digital compositional mammography (FFDCM), which can independently image the three compositional components of breast tissue: water, lipid, and protein.

METHODS

Dual-energy attenuation and breast shape measures are used together to solve for the three compositional thicknesses. Dual-energy measurements were performed on breast-mimicking phantoms using a full-field digital mammography unit. The phantoms were made of materials shown to have similar x-ray attenuation properties of the compositional compartments. They were made of two main stacks of thicknesses around 2 and 4 cm. Twenty-six thickness and composition combinations were used to derive the compositional calibration using a least-squares fitting approach.

RESULTS

Very high accuracy was achieved with a simple cubic fitting function with root mean square errors of 0.023, 0.011, and 0.012 cm for the water, lipid, and protein thicknesses, respectively. The repeatability (percent coefficient of variation) of these measures was tested using sequential images and was found to be 0.5%, 0.5%, and 3.3% for water, lipid, and protein, respectively. However, swapping the location of the two stacks of the phantom on the imaging plate introduced further errors showing the need for more complete system uniformity corrections. Finally, a preliminary breast image is presented of each of the compositional compartments separately.

CONCLUSIONS

FFDCM has been derived and exhibited good compositional thickness accuracy on phantoms. Preliminary breast images demonstrated the feasibility of creating individual compositional diagnostic images in a clinical environment.

摘要

目的

由于恶性组织与正常组织之间的对比度较低,加之乳房以水为主导密度,使得致密型乳房中的乳房 X 线摄影术( mammography )的敏感性较低。水存在于脂肪组织和纤维腺体组织中,构成了乳房的大部分质量。然而,大量蛋白质主要存在于纤维腺体组织中,而大多数癌症都起源于此。如果能在不影响水的情况下对乳房 X 线摄影术的蛋白质部分进行成像,那么乳房 X 线摄影术的敏感性和特异性可能会得到提高。本文介绍了一种新的双能乳腺 X 线摄影技术,即全视野数字成分乳腺 X 线摄影术( full-field digital compositional mammography , FFDCM ),它可以独立地对乳房组织的三种组成成分:水、脂肪和蛋白质进行成像。

方法

使用双能衰减和乳房形状测量值共同求解三种组成厚度。使用全视野数字乳腺摄影设备对乳房模拟体模进行了双能测量。这些体模是由具有相似 X 射线衰减特性的组成隔室材料制成的。它们由两个主要的厚度堆栈组成,厚度约为 2cm 和 4cm。使用 26 种厚度和组成组合,采用最小二乘拟合方法得出组成校准。

结果

使用简单的立方拟合函数,水、脂肪和蛋白质厚度的均方根误差分别达到 0.023、0.011 和 0.012cm,精度非常高。使用连续图像测试这些测量值的重复性(百分比变异系数),结果发现水、脂肪和蛋白质的重复性分别为 0.5%、0.5%和 3.3%。然而,将模拟体模的两个厚度堆栈在成像板上的位置进行交换会引入进一步的误差,这表明需要更完整的系统均匀性校正。最后,分别呈现了初步的每个组成隔室的乳房图像。

结论

FFDCM 已经推导出来,并在体模上显示出了良好的组成厚度准确性。初步的乳房图像表明,在临床环境中创建单个组成诊断图像是可行的。

相似文献

9
The impact of calibration phantom errors on dual-energy digital mammography.校准体模误差对双能数字乳腺摄影的影响。
Phys Med Biol. 2008 Nov 21;53(22):6321-36. doi: 10.1088/0031-9155/53/22/004. Epub 2008 Oct 20.

引用本文的文献

本文引用的文献

2
The impact of calibration phantom errors on dual-energy digital mammography.校准体模误差对双能数字乳腺摄影的影响。
Phys Med Biol. 2008 Nov 21;53(22):6321-36. doi: 10.1088/0031-9155/53/22/004. Epub 2008 Oct 20.
4
Cancer statistics, 2008.2008年癌症统计数据。
CA Cancer J Clin. 2008 Mar-Apr;58(2):71-96. doi: 10.3322/CA.2007.0010. Epub 2008 Feb 20.
7
Material differentiation by dual energy CT: initial experience.双能CT的物质鉴别:初步经验
Eur Radiol. 2007 Jun;17(6):1510-7. doi: 10.1007/s00330-006-0517-6. Epub 2006 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验