Suppr超能文献

药物发现中的计算方法故障排除

Troubleshooting computational methods in drug discovery.

作者信息

Kortagere Sandhya, Ekins Sean

机构信息

Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.

出版信息

J Pharmacol Toxicol Methods. 2010 Mar-Apr;61(2):67-75. doi: 10.1016/j.vascn.2010.02.005. Epub 2010 Feb 20.

Abstract

Computational approaches for drug discovery such as ligand-based and structure-based methods, are increasingly seen as an efficient approach for lead discovery as well as providing insights on absorption, distribution, metabolism, excretion and toxicity (ADME/Tox). What is perhaps less well known and widely described are the limitations of the different technologies. We have therefore presented a troubleshooting approach to QSAR, homology modeling, docking as well as hybrid methods. If such computational or cheminformatics methods are to become more widely used by non-experts it is critical that such limitations are brought to the user's attention and addressed during their workflows. This could improve the quality of the models and results that are obtained.

摘要

用于药物发现的计算方法,如基于配体和基于结构的方法,越来越被视为一种有效的先导物发现方法,同时也能提供有关吸收、分布、代谢、排泄和毒性(ADME/Tox)的见解。或许鲜为人知且未被广泛描述的是不同技术的局限性。因此,我们提出了一种针对定量构效关系(QSAR)、同源建模、对接以及混合方法的故障排除方法。如果此类计算或化学信息学方法要被非专家更广泛地使用,那么至关重要的是,要让用户注意到这些局限性,并在他们的工作流程中加以解决。这可以提高所获得模型和结果的质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验