Suppr超能文献

GO-Bayes:基于贝叶斯方法的基因本体论过表达分析。

GO-Bayes: Gene Ontology-based overrepresentation analysis using a Bayesian approach.

机构信息

Department of Clinical Sciences, U.T. Southwestern Medical Center, 5323 Harry Hines Boulevard Dallas, TX 75390-9072, USA.

出版信息

Bioinformatics. 2010 Apr 1;26(7):905-11. doi: 10.1093/bioinformatics/btq059. Epub 2010 Feb 21.

Abstract

MOTIVATION

A typical approach for the interpretation of high-throughput experiments, such as gene expression microarrays, is to produce groups of genes based on certain criteria (e.g. genes that are differentially expressed). To gain more mechanistic insights into the underlying biology, overrepresentation analysis (ORA) is often conducted to investigate whether gene sets associated with particular biological functions, for example, as represented by Gene Ontology (GO) annotations, are statistically overrepresented in the identified gene groups. However, the standard ORA, which is based on the hypergeometric test, analyzes each GO term in isolation and does not take into account the dependence structure of the GO-term hierarchy.

RESULTS

We have developed a Bayesian approach (GO-Bayes) to measure overrepresentation of GO terms that incorporates the GO dependence structure by taking into account evidence not only from individual GO terms, but also from their related terms (i.e. parents, children, siblings, etc.). The Bayesian framework borrows information across related GO terms to strengthen the detection of overrepresentation signals. As a result, this method tends to identify sets of closely related GO terms rather than individual isolated GO terms. The advantage of the GO-Bayes approach is demonstrated with a simulation study and an application example.

摘要

动机

一种典型的高通量实验解释方法,如基因表达微阵列,是根据某些标准(例如差异表达的基因)产生基因组。为了更深入地了解潜在生物学机制,通常进行过度表示分析(ORA),以研究与特定生物学功能相关的基因集是否在鉴定的基因组中具有统计学上的过度表示,例如由基因本体论(GO)注释表示。然而,基于超几何检验的标准 ORA 分别分析每个 GO 术语,并且不考虑 GO 术语层次结构的依赖关系结构。

结果

我们开发了一种贝叶斯方法(GO-Bayes)来测量 GO 术语的过度表示,该方法通过考虑不仅来自单个 GO 术语的证据,而且还考虑其相关术语(即父母、子女、兄弟姐妹等)来纳入 GO 依赖关系结构。贝叶斯框架在相关的 GO 术语之间借用信息,以加强对过度表示信号的检测。因此,这种方法倾向于识别密切相关的 GO 术语集,而不是单个孤立的 GO 术语。GO-Bayes 方法的优势通过模拟研究和应用示例得到了证明。

相似文献

引用本文的文献

3
A decision analysis model for KEGG pathway analysis.一种用于KEGG通路分析的决策分析模型。
BMC Bioinformatics. 2016 Oct 6;17(1):407. doi: 10.1186/s12859-016-1285-1.
6
Enrichment analysis applied to disease prognosis.应用于疾病预后的富集分析。
J Biomed Semantics. 2013 Oct 8;4(1):21. doi: 10.1186/2041-1480-4-21.
9
Discovering pathway cross-talks based on functional relations between pathways.基于通路间的功能关系发现通路串扰。
BMC Genomics. 2012;13 Suppl 7(Suppl 7):S25. doi: 10.1186/1471-2164-13-S7-S25. Epub 2012 Dec 13.

本文引用的文献

8
Modular organization of protein interaction networks.蛋白质相互作用网络的模块化组织
Bioinformatics. 2007 Jan 15;23(2):207-14. doi: 10.1093/bioinformatics/btl562. Epub 2006 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验