CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia.
J Exp Bot. 2010 Mar;61(5):1455-67. doi: 10.1093/jxb/erq023. Epub 2010 Feb 22.
Members of the ALMT gene family contribute to the Al(3+) resistance of several plant species by facilitating malate efflux from root cells. The first member of this family to be cloned and characterized, TaALMT1, is responsible for most of the natural variation of Al(3+) resistance in wheat. The current study describes the isolation and characterization of HvALMT1, the barley gene with the greatest sequence similarity to TaALMT1. HvALMT1 is located on chromosome 2H which has not been associated with Al(3+) resistance in barley. The relatively low levels of HvALMT1 expression detected in root and shoot tissues were independent of external aluminium or phosphorus supply. Transgenic barley plants transformed with the HvALMT1 promoter fused to the green fluorescent protein (GFP) indicated that expression of HvALMT1 was relatively high in stomatal guard cells and in root tissues containing expanding cells. GFP fused to the C-terminus of the full HvALMT1 protein localized to the plasma membrane and motile vesicles within the cytoplasm. HvALMT1 conferred both inward and outward currents when expressed in Xenopus laevis oocytes that were bathed in a range of anions including malate. Both malate uptake and efflux were confirmed in oocyte assays using [(14)C]malate as a radiotracer. It is suggested that HvALMT1 functions as an anion channel to facilitate organic anion transport in stomatal function and expanding cells.
ALMT 基因家族的成员通过促进苹果酸从根细胞中流出,有助于几种植物物种对 Al(3+)的抗性。该家族中第一个被克隆和表征的成员 TaALMT1,负责小麦中大部分自然变异的 Al(3+)抗性。本研究描述了 HvALMT1 的分离和表征,HvALMT1 是与 TaALMT1 序列相似度最高的大麦基因。HvALMT1 位于 2H 染色体上,该染色体与大麦中的 Al(3+)抗性无关。在根和茎组织中检测到的 HvALMT1 表达水平相对较低,与外部铝或磷供应无关。用 HvALMT1 启动子与绿色荧光蛋白 (GFP) 融合转化的大麦转基因植株表明,HvALMT1 在保卫细胞和含有扩展细胞的根组织中的表达水平相对较高。GFP 与完整的 HvALMT1 蛋白的 C 末端融合,定位于质膜和细胞质中的运动小泡。HvALMT1 在表达于非洲爪蟾卵母细胞中时,既能引起内向电流,也能引起外向电流,这些卵母细胞被一系列阴离子包括苹果酸浴液包围。在卵母细胞实验中,使用 [(14)C]苹果酸作为示踪剂,证实了苹果酸的摄取和流出。因此,HvALMT1 作为阴离子通道,有助于在气孔功能和扩展细胞中进行有机阴离子的运输。