Suppr超能文献

miR-9 和 NFATc3 调节心肌肥大中的 myocardin。

miR-9 and NFATc3 regulate myocardin in cardiac hypertrophy.

机构信息

Division of Cardiovascular Research, National Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

出版信息

J Biol Chem. 2010 Apr 16;285(16):11903-12. doi: 10.1074/jbc.M109.098004. Epub 2010 Feb 21.

Abstract

Myocardial hypertrophy is frequently associated with poor clinical outcomes including the development of cardiac systolic and diastolic dysfunction and ultimately heart failure. To prevent cardiac hypertrophy and heart failure, it is necessary to identify and characterize molecules that may regulate the hypertrophic program. Our present study reveals that nuclear factor of activated T cells c3 (NFATc3) and myocardin constitute a hypertrophic pathway that can be targeted by miR-9. Our results show that myocardin expression is elevated in response to hypertrophic stimulation with isoproterenol and aldosterone. In exploring the molecular mechanism by which myocardin expression is elevated, we identified that NFATc3 can bind to the promoter region of myocardin and transcriptionally activate its expression. Knockdown of myocardin can attenuate hypertrophic responses triggered by NFATc3, suggesting that myocardin can be a downstream mediator of NFATc3 in the hypertrophic cascades. MicroRNAs are a class of small noncoding RNAs that mediate post-transcriptional gene silencing. Our data reveal that miR-9 can suppress myocardin expression. However, the hypertrophic stimulation with isoproterenol and aldosterone leads to a decrease in the expression levels of miR-9. Administration of miR-9 could attenuate cardiac hypertrophy and ameliorate cardiac function. Taken together, our data demonstrate that NFATc3 can promote myocardin expression, whereas miR-9 is able to suppress myocardin expression, thereby regulating cardiac hypertrophy.

摘要

心肌肥厚常与不良临床结局相关,包括心脏收缩和舒张功能障碍的发展,最终导致心力衰竭。为了预防心肌肥厚和心力衰竭,有必要识别和鉴定可能调节肥厚程序的分子。我们的研究揭示,活化 T 细胞核因子 c3(NFATc3)和肌球蛋白结合蛋白 C(myocardin)构成了一个可以被 miR-9 靶向的肥厚途径。我们的结果表明,心肌球蛋白的表达在异丙肾上腺素和醛固酮的肥厚刺激下升高。在探索心肌球蛋白表达升高的分子机制时,我们确定 NFATc3 可以结合到心肌球蛋白的启动子区域,并转录激活其表达。心肌球蛋白的敲低可以减弱 NFATc3 触发的肥厚反应,这表明心肌球蛋白可以作为 NFATc3 在肥厚级联反应中的下游介质。MicroRNAs 是一类小的非编码 RNA,介导转录后基因沉默。我们的数据揭示 miR-9 可以抑制心肌球蛋白的表达。然而,异丙肾上腺素和醛固酮的肥厚刺激导致 miR-9 的表达水平降低。miR-9 的给药可以减轻心脏肥厚并改善心脏功能。总之,我们的数据表明 NFATc3 可以促进心肌球蛋白的表达,而 miR-9 能够抑制心肌球蛋白的表达,从而调节心肌肥厚。

相似文献

1
miR-9 and NFATc3 regulate myocardin in cardiac hypertrophy.
J Biol Chem. 2010 Apr 16;285(16):11903-12. doi: 10.1074/jbc.M109.098004. Epub 2010 Feb 21.
2
miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy.
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):12103-8. doi: 10.1073/pnas.0811371106. Epub 2009 Jul 2.
3
LncRNA-Mhrt regulates cardiac hypertrophy by modulating the miR-145a-5p/KLF4/myocardin axis.
J Mol Cell Cardiol. 2020 Feb;139:47-61. doi: 10.1016/j.yjmcc.2019.12.013. Epub 2020 Jan 23.
5
MiR-466h-5p induces expression of myocardin with complementary promoter sequences.
Biochem Biophys Res Commun. 2019 Jun 18;514(1):187-193. doi: 10.1016/j.bbrc.2019.04.133. Epub 2019 Apr 25.
6
COX-2 is involved in ET-1-induced hypertrophy of neonatal rat cardiomyocytes: role of NFATc3.
Mol Cell Endocrinol. 2014 Feb 15;382(2):998-1006. doi: 10.1016/j.mce.2013.11.012. Epub 2013 Nov 26.
7
MicroRNA-328 as a regulator of cardiac hypertrophy.
Int J Cardiol. 2014 May 1;173(2):268-76. doi: 10.1016/j.ijcard.2014.02.035. Epub 2014 Feb 28.
8
Ca²⁺ signal-induced cardiomyocyte hypertrophy through activation of myocardin.
Gene. 2015 Feb 15;557(1):43-51. doi: 10.1016/j.gene.2014.12.007. Epub 2014 Dec 5.
9
The mechanism of myocardial hypertrophy regulated by the interaction between mhrt and myocardin.
Cell Signal. 2018 Mar;43:11-20. doi: 10.1016/j.cellsig.2017.11.007. Epub 2017 Dec 5.
10
Kruppel-like factor 4 protein regulates isoproterenol-induced cardiac hypertrophy by modulating myocardin expression and activity.
J Biol Chem. 2014 Sep 19;289(38):26107-26118. doi: 10.1074/jbc.M114.582809. Epub 2014 Aug 6.

引用本文的文献

1
Epigenetic Mechanisms in Heart Diseases.
Rev Cardiovasc Med. 2025 Jul 30;26(7):38696. doi: 10.31083/RCM38696. eCollection 2025 Jul.
2
MicroRNA analysis of medium/large placenta extracellular vesicles in normal and preeclampsia pregnancies.
Front Cardiovasc Med. 2024 Apr 2;11:1371168. doi: 10.3389/fcvm.2024.1371168. eCollection 2024.
3
The Interplay Between Gut Microbiota and miRNAs in Cardiovascular Diseases.
Front Cardiovasc Med. 2022 Mar 16;9:856901. doi: 10.3389/fcvm.2022.856901. eCollection 2022.
4
MicroRNAs Regulate TASK-1 and Are Linked to Myocardial Dilatation in Atrial Fibrillation.
J Am Heart Assoc. 2022 Apr 5;11(7):e023472. doi: 10.1161/JAHA.121.023472. Epub 2022 Mar 18.
6
microRNAs involved in psoriasis and cardiovascular diseases.
Vasc Biol. 2021 Jun 3;3(1):R49-R68. doi: 10.1530/VB-21-0007. eCollection 2021.
7
Impact of Nutritional Epigenetics in Essential Hypertension: Targeting microRNAs in the Gut-Liver Axis.
Curr Hypertens Rep. 2021 May 7;23(5):28. doi: 10.1007/s11906-021-01142-9.
8
MicroRNA-30 regulates left ventricular hypertrophy in chronic kidney disease.
JCI Insight. 2021 May 24;6(10):138027. doi: 10.1172/jci.insight.138027.
9
C-C chemokine receptor 5 signaling contributes to cardiac remodeling and dysfunction under pressure overload.
Mol Med Rep. 2021 Jan;23(1). doi: 10.3892/mmr.2020.11687. Epub 2020 Nov 17.
10

本文引用的文献

1
miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy.
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):12103-8. doi: 10.1073/pnas.0811371106. Epub 2009 Jul 2.
3
microRNAs and muscle disorders.
J Cell Sci. 2009 Jan 1;122(Pt 1):13-20. doi: 10.1242/jcs.041723.
4
MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts.
Nature. 2008 Dec 18;456(7224):980-4. doi: 10.1038/nature07511. Epub 2008 Nov 30.
5
Toward microRNA-based therapeutics for heart disease: the sense in antisense.
Circ Res. 2008 Oct 24;103(9):919-28. doi: 10.1161/CIRCRESAHA.108.183426.
6
Foxo3a inhibits cardiomyocyte hypertrophy through transactivating catalase.
J Biol Chem. 2008 Oct 31;283(44):29730-9. doi: 10.1074/jbc.M805514200. Epub 2008 Sep 4.
7
Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis.
Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):13027-32. doi: 10.1073/pnas.0805038105. Epub 2008 Aug 22.
8
miRNA expression in the failing human heart: functional correlates.
J Mol Cell Cardiol. 2008 Aug;45(2):185-92. doi: 10.1016/j.yjmcc.2008.04.014. Epub 2008 May 15.
9
MicroRNAs: novel regulators in cardiac development and disease.
Cardiovasc Res. 2008 Sep 1;79(4):562-70. doi: 10.1093/cvr/cvn137. Epub 2008 May 29.
10
Myosin regulatory light chain phosphorylation attenuates cardiac hypertrophy.
J Biol Chem. 2008 Jul 11;283(28):19748-56. doi: 10.1074/jbc.M802605200. Epub 2008 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验