Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
Apoptosis. 2010 Nov;15(11):1354-63. doi: 10.1007/s10495-010-0476-x.
Normal mitochondrial dynamics consist of fission and fusion events giving rise to new mitochondria, a process termed mitochondrial biogenesis. However, several neurodegenerative disorders manifest aberrant mitochondrial dynamics, resulting in morphological abnormalities often associated with deficits in mitochondrial mobility and cell bioenergetics. Rarely, dysfunctional mitochondrial occur in a familial pattern due to genetic mutations, but much more commonly patients manifest sporadic forms of mitochondrial disability presumably related to a complex set of interactions of multiple genes (or their products) with environmental factors (G × E). Recent studies have shown that generation of excessive nitric oxide (NO), in part due to generation of oligomers of amyloid-β (Aβ) protein or overactivity of the NMDA-subtype of glutamate receptor, can augment mitochondrial fission, leading to frank fragmentation of the mitochondria. S-Nitrosylation, a covalent redox reaction of NO with specific protein thiol groups, represents one mechanism contributing to NO-induced mitochondrial fragmentation, bioenergetic failure, synaptic damage, and eventually neuronal apoptosis. Here, we summarize our evidence in Alzheimer's disease (AD) patients and animal models showing that NO contributes to mitochondrial fragmentation via S-nitrosylation of dynamin-related protein 1 (Drp1), a protein involved in mitochondrial fission. These findings may provide a new target for drug development in AD. Additionally, we review emerging evidence that redox reactions triggered by excessive levels of NO can contribute to protein misfolding, the hallmark of a number of neurodegenerative disorders, including AD and Parkinson's disease. For example, S-nitrosylation of parkin disrupts its E3 ubiquitin ligase activity, and thereby affects Lewy body formation and neuronal cell death.
正常的线粒体动力学包括分裂和融合事件,产生新的线粒体,这一过程被称为线粒体生物发生。然而,几种神经退行性疾病表现出异常的线粒体动力学,导致形态异常,通常与线粒体运动和细胞生物能量学缺陷有关。很少有功能失调的线粒体以家族模式出现,这是由于基因突变,但更多的是,患者表现出散发性线粒体功能障碍,推测与多种基因(或其产物)与环境因素(G × E)的复杂相互作用有关。最近的研究表明,过量一氧化氮(NO)的产生,部分是由于淀粉样β(Aβ)蛋白寡聚物的产生或 NMDA 型谷氨酸受体的过度活跃,可增强线粒体裂变,导致线粒体明显碎裂。S-亚硝基化,NO 与特定蛋白巯基的共价氧化还原反应,是导致 NO 诱导的线粒体碎片化、生物能量衰竭、突触损伤和最终神经元凋亡的一种机制。在这里,我们总结了我们在阿尔茨海默病(AD)患者和动物模型中的证据,表明 NO 通过参与线粒体裂变的动力相关蛋白 1(Drp1)的 S-亚硝基化导致线粒体碎片化。这些发现可能为 AD 的药物开发提供新的靶点。此外,我们还回顾了新出现的证据,即过量水平的 NO 引发的氧化还原反应可能导致蛋白质错误折叠,这是包括 AD 和帕金森病在内的几种神经退行性疾病的标志。例如,Parkin 的 S-亚硝基化会破坏其 E3 泛素连接酶活性,从而影响 Lewy 体的形成和神经元细胞死亡。