Suppr超能文献

氧化应激引起的氧化还原反应介导神经退行性疾病中的蛋白质错误折叠和线粒体功能障碍。

Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases.

机构信息

Department of Pathology and Anatomical Sciences, University of Missouri-Columbia School of Medicine, One Hospital Drive, Columbia, MO 65212, USA.

出版信息

Mol Neurobiol. 2010 Jun;41(2-3):55-72. doi: 10.1007/s12035-010-8113-9. Epub 2010 Mar 25.

Abstract

Overstimulation of N-methyl-D-aspartate (NMDA)-type glutamate receptors accounts, at least in part, for excitotoxic neuronal damage, potentially contributing to a wide range of acute and chronic neurologic diseases. Neurodegenerative disorders including Alzheimer's disease (AD) and Parkinson's disease (PD), manifest deposits of misfolded or aggregated proteins, and result from synaptic injury and neuronal death. Recent studies have suggested that nitrosative stress due to generation of excessive nitric oxide (NO) can mediate excitotoxicity in part by triggering protein misfolding and aggregation, and mitochondrial fragmentation in the absence of genetic predisposition. S-Nitrosylation, or covalent reaction of NO with specific protein thiol groups, represents a convergent signal pathway contributing to NO-induced protein misfolding and aggregation, compromised dynamics of mitochondrial fission-fusion process, thus leading to neurotoxicity. Here, we review the effect of S-nitrosylation on protein function under excitotoxic conditions, and present evidence suggesting that NO contributes to protein misfolding and aggregation via S-nitrosylating protein-disulfide isomerase or the E3 ubiquitin ligase parkin, and mitochondrial fragmentation through beta-amyloid-related S-nitrosylation of dynamin-related protein-1. Moreover, we also discuss that inhibition of excessive NMDA receptor activity by memantine, an uncompetitive/fast off-rate (UFO) drug can ameliorate excessive production of NO, protein misfolding and aggregation, mitochondrial fragmentation, and neurodegeneration.

摘要

N-甲基-D-天冬氨酸(NMDA)型谷氨酸受体的过度刺激至少部分导致兴奋性毒性神经元损伤,可能导致广泛的急性和慢性神经疾病。神经退行性疾病包括阿尔茨海默病(AD)和帕金森病(PD),表现为错误折叠或聚集的蛋白质沉积,并由突触损伤和神经元死亡引起。最近的研究表明,由于过量一氧化氮(NO)的生成而导致的硝化应激可以部分通过触发蛋白质错误折叠和聚集以及线粒体碎片化来介导兴奋性毒性,而没有遗传倾向。S-亚硝基化,即 NO 与特定蛋白质巯基的共价反应,代表一种收敛信号途径,有助于 NO 诱导的蛋白质错误折叠和聚集、线粒体裂变融合过程的动力学受损,从而导致神经毒性。在这里,我们综述了在兴奋性毒性条件下 S-亚硝基化对蛋白质功能的影响,并提出了证据表明,NO 通过 S-亚硝基化蛋白二硫键异构酶或 E3 泛素连接酶 parkin 导致蛋白质错误折叠和聚集,通过与β-淀粉样蛋白相关的 dynamin-相关蛋白-1 的 S-亚硝基化导致线粒体碎片化。此外,我们还讨论了竞争性/快速脱靶(UFO)药物美金刚通过抑制 NMDA 受体的过度活性可以改善过量的 NO 产生、蛋白质错误折叠和聚集、线粒体碎片化和神经退行性变。

相似文献

1
3
Emerging roles of S-nitrosylation in protein misfolding and neurodegenerative diseases.
Antioxid Redox Signal. 2008 Jan;10(1):87-101. doi: 10.1089/ars.2007.1858.
4
Cell death: protein misfolding and neurodegenerative diseases.
Apoptosis. 2009 Apr;14(4):455-68. doi: 10.1007/s10495-008-0301-y.
5
S-nitrosylation of critical protein thiols mediates protein misfolding and mitochondrial dysfunction in neurodegenerative diseases.
Antioxid Redox Signal. 2011 Apr 15;14(8):1479-92. doi: 10.1089/ars.2010.3570. Epub 2011 Jan 8.
6
S-Nitrosylation and uncompetitive/fast off-rate (UFO) drug therapy in neurodegenerative disorders of protein misfolding.
Cell Death Differ. 2007 Jul;14(7):1305-14. doi: 10.1038/sj.cdd.4402138. Epub 2007 Apr 13.
9
Preventing Ca2+-mediated nitrosative stress in neurodegenerative diseases: possible pharmacological strategies.
Cell Calcium. 2010 Feb;47(2):190-7. doi: 10.1016/j.ceca.2009.12.009. Epub 2010 Jan 8.
10
Redox regulation of protein misfolding, mitochondrial dysfunction, synaptic damage, and cell death in neurodegenerative diseases.
Exp Neurol. 2012 Nov;238(1):12-21. doi: 10.1016/j.expneurol.2012.06.032. Epub 2012 Jul 5.

引用本文的文献

1
Interplay Between Aging and Tau Pathology in Alzheimer's Disease: Mechanisms and Translational Perspectives.
Antioxidants (Basel). 2025 Jun 24;14(7):774. doi: 10.3390/antiox14070774.
3
Myofilament dysfunction in diastolic heart failure.
Heart Fail Rev. 2024 Jan;29(1):79-93. doi: 10.1007/s10741-023-10352-z. Epub 2023 Oct 14.
4
Mitochondrial proteome research: the road ahead.
Nat Rev Mol Cell Biol. 2024 Jan;25(1):65-82. doi: 10.1038/s41580-023-00650-7. Epub 2023 Sep 29.
6
Triose-phosphate isomerase deficiency is associated with a dysregulation of synaptic vesicle recycling in .
Front Synaptic Neurosci. 2023 Feb 28;15:1124061. doi: 10.3389/fnsyn.2023.1124061. eCollection 2023.
7
Oxidative Stress in Long-Term Exposure to Multi-Walled Carbon Nanotubes in Male Rats.
Antioxidants (Basel). 2023 Feb 12;12(2):464. doi: 10.3390/antiox12020464.
9
Mechanisms and pathophysiology of Barrett oesophagus.
Nat Rev Gastroenterol Hepatol. 2022 Sep;19(9):605-620. doi: 10.1038/s41575-022-00622-w. Epub 2022 Jun 7.

本文引用的文献

2
Protein S-nitrosylation in health and disease: a current perspective.
Trends Mol Med. 2009 Sep;15(9):391-404. doi: 10.1016/j.molmed.2009.06.007. Epub 2009 Aug 31.
3
Nitric oxide links mitochondrial fission to Alzheimer's disease.
Sci Signal. 2009 May 5;2(69):pe29. doi: 10.1126/scisignal.269pe29.
4
S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury.
Science. 2009 Apr 3;324(5923):102-5. doi: 10.1126/science.1171091.
5
Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19318-23. doi: 10.1073/pnas.0804871105. Epub 2008 Dec 2.
7
The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae.
Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):13145-50. doi: 10.1073/pnas.0806192105. Epub 2008 Aug 29.
8
Misfolded proteins partition between two distinct quality control compartments.
Nature. 2008 Aug 28;454(7208):1088-95. doi: 10.1038/nature07195.
9
ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER.
Science. 2008 Jul 25;321(5888):569-72. doi: 10.1126/science.1159293.
10
Mitochondrial fragmentation in neurodegeneration.
Nat Rev Neurosci. 2008 Jul;9(7):505-18. doi: 10.1038/nrn2417.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验