Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute,10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
Cell Death Differ. 2011 Sep;18(9):1478-86. doi: 10.1038/cdd.2011.65. Epub 2011 May 20.
The pathological processes of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases engender synaptic and neuronal cell damage. While mild oxidative and nitrosative (nitric oxide (NO)-related) stress mediates normal neuronal signaling, excessive accumulation of these free radicals is linked to neuronal cell injury or death. In neurons, N-methyl-D-aspartate (NMDA) receptor (NMDAR) activation and subsequent Ca(2+) influx can induce the generation of NO via neuronal NO synthase. Emerging evidence has demonstrated that S-nitrosylation, representing covalent reaction of an NO group with a critical protein thiol, mediates the vast majority of NO signaling. Analogous to phosphorylation and other posttranslational modifications, S-nitrosylation can regulate the biological activity of many proteins. Here, we discuss recent studies that implicate neuropathogenic roles of S-nitrosylation in protein misfolding, mitochondrial dysfunction, synaptic injury, and eventual neuronal loss. Among a growing number of S-nitrosylated proteins that contribute to disease pathogenesis, in this review we focus on S-nitrosylated protein-disulfide isomerase (forming SNO-PDI) and dynamin-related protein 1 (forming SNO-Drp1). Furthermore, we describe drugs, such as memantine and newer derivatives of this compound that can prevent both hyperactivation of extrasynaptic NMDARs as well as downstream pathways that lead to nitrosative stress, synaptic damage, and neuronal loss.
神经退行性疾病(如阿尔茨海默病和帕金森病)的病理过程会导致突触和神经元细胞损伤。虽然轻度氧化应激和硝化应激(与一氧化氮 (NO) 相关)可以介导正常的神经元信号传递,但这些自由基的过度积累与神经元细胞损伤或死亡有关。在神经元中,N-甲基-D-天冬氨酸 (NMDA) 受体 (NMDAR) 的激活和随后的 Ca2+内流可通过神经元一氧化氮合酶诱导 NO 的产生。新出现的证据表明,S-亚硝基化(NO 基团与关键蛋白巯基的共价反应)代表了大多数 NO 信号转导的机制。与磷酸化和其他翻译后修饰类似,S-亚硝基化可以调节许多蛋白质的生物学活性。在这里,我们讨论了最近的研究,这些研究表明 S-亚硝基化在蛋白质错误折叠、线粒体功能障碍、突触损伤和最终神经元丢失中的神经致病性作用。在越来越多的与疾病发病机制相关的 S-亚硝基化蛋白中,我们在本文中重点关注 S-亚硝基化蛋白二硫化物异构酶(形成 SNO-PDI)和与 dynamin 相关的蛋白 1(形成 SNO-Drp1)。此外,我们还描述了一些药物,如美金刚和该化合物的新型衍生物,它们可以预防细胞外 NMDA 受体的过度激活以及导致硝化应激、突触损伤和神经元丢失的下游途径。