Suppr超能文献

磁性条码水凝胶微球用于多重检测。

Magnetic barcoded hydrogel microparticles for multiplexed detection.

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

出版信息

Langmuir. 2010 Jun 1;26(11):8008-14. doi: 10.1021/la904903g.

Abstract

Magnetic polymer particles have been used in a wide variety of applications ranging from targeting and separation to diagnostics and imaging. Current synthesis methods have limited these particles to spherical or deformations of spherical morphologies. In this paper, we report the use of stop flow lithography to produce magnetic hydrogel microparticles with a graphical code region, a probe region, and a magnetic tail region. These anisotropic multifunctional magnetic polymer particles are an enhanced version of previously synthesized "barcoded" particles (Science, 2007, 315, 1393-1396) developed for the sensitive and rapid multiplexed sensing of nucleic acids. The newly added magnetic region has acquired dipole moments in the presence of weak homogeneous magnetic fields, allowing the particles to align along the applied field direction. The novel magnetic properties have led to practical applications in the efficient orientation and separation of the barcoded microparticles during biological assays without disrupting detection capabilities.

摘要

磁性聚合物颗粒已广泛应用于靶向和分离、诊断和成像等领域。目前的合成方法将这些颗粒限制在球形或球形变形的形态。在本文中,我们报告了使用停流光刻技术生产具有图形码区域、探针区域和磁尾区域的磁性水凝胶微球。这些各向异性多功能磁性聚合物颗粒是之前为了灵敏快速地对核酸进行多重检测而合成的“编码”颗粒(Science,2007,315,1393-1396)的增强版本。在弱均匀磁场的存在下,新添加的磁性区域获得了偶极矩,使得颗粒能够沿着施加的磁场方向排列。新的磁性特性在生物测定过程中有效地实现了编码微球的定向和分离,而不会破坏检测能力。

相似文献

1
Magnetic barcoded hydrogel microparticles for multiplexed detection.
Langmuir. 2010 Jun 1;26(11):8008-14. doi: 10.1021/la904903g.
2
Post-synthesis functionalized hydrogel microparticles for high performance microRNA detection.
Anal Chim Acta. 2019 Oct 17;1076:110-117. doi: 10.1016/j.aca.2019.05.009. Epub 2019 May 7.
3
Colour-barcoded magnetic microparticles for multiplexed bioassays.
Nat Mater. 2010 Sep;9(9):745-9. doi: 10.1038/nmat2815. Epub 2010 Aug 22.
4
5
CRISPR-Enhanced Hydrogel Microparticles for Multiplexed Detection of Nucleic Acids.
Adv Sci (Weinh). 2023 Apr;10(10):e2206872. doi: 10.1002/advs.202206872. Epub 2023 Feb 1.
6
Using stop-flow lithography to produce opaque microparticles: synthesis and modeling.
Langmuir. 2011 Nov 15;27(22):13813-9. doi: 10.1021/la202796b. Epub 2011 Oct 19.
7
Nucleic acid sandwich hybridization: enhanced reaction rate with magnetic microparticles as carriers.
Mol Cell Probes. 1988 Dec;2(4):281-8. doi: 10.1016/0890-8508(88)90012-6.
8
Multiplexed protein quantification with barcoded hydrogel microparticles.
Anal Chem. 2011 Jan 1;83(1):193-9. doi: 10.1021/ac1022343. Epub 2010 Dec 13.
9
Bar-coded hydrogel microparticles for protein detection: synthesis, assay and scanning.
Nat Protoc. 2011 Oct 20;6(11):1761-74. doi: 10.1038/nprot.2011.400.

引用本文的文献

1
Janus particles and motors: unrivaled devices for mastering (bio)sensing.
Mikrochim Acta. 2021 Nov 10;188(12):416. doi: 10.1007/s00604-021-05053-z.
3
Observation of iron oxide nanoparticle synthesis in magnetogels using magnetic resonance imaging.
Soft Matter. 2020 Dec 7;16(45):10244-10251. doi: 10.1039/d0sm01566k. Epub 2020 Oct 8.
4
5
Engineering functional hydrogel microparticle interfaces by controlled oxygen-inhibited photopolymerization.
Colloids Surf B Biointerfaces. 2019 Aug 1;180:371-375. doi: 10.1016/j.colsurfb.2019.05.001. Epub 2019 May 3.
6
Low temperature flow lithography.
Biomicrofluidics. 2018 Sep 24;12(5):054105. doi: 10.1063/1.5047016. eCollection 2018 Sep.
7
Cell Microarray Technologies for High-Throughput Cell-Based Biosensors.
Sensors (Basel). 2017 Jun 5;17(6):1293. doi: 10.3390/s17061293.
8
Flow lithography in ultraviolet-curable polydimethylsiloxane microfluidic chips.
Biomicrofluidics. 2017 Apr 27;11(2):024120. doi: 10.1063/1.4982698. eCollection 2017 Mar.
9
Janus particles for biological imaging and sensing.
Analyst. 2016 Jun 21;141(12):3526-39. doi: 10.1039/c6an00325g. Epub 2016 Apr 7.
10
Hydrogel microparticles for biosensing.
Eur Polym J. 2015 Nov;72:386-412. doi: 10.1016/j.eurpolymj.2015.02.022. Epub 2015 Feb 28.

本文引用的文献

1
Encoded porous beads for label-free multiplex detection of tumor markers.
Adv Mater. 2009 Feb 2;21(5):569-72. doi: 10.1002/adma.200802339.
2
Microparticle encoding technologies for high-throughput multiplexed suspension assays.
Integr Biol (Camb). 2009 Jun;1(5-6):345-62. doi: 10.1039/b905502a. Epub 2009 May 7.
3
Microfluidic applications of magnetic particles for biological analysis and catalysis.
Chem Rev. 2010 Mar 10;110(3):1518-63. doi: 10.1021/cr9001929.
4
Hydrodynamic focusing lithography.
Angew Chem Int Ed Engl. 2010;49(1):87-90. doi: 10.1002/anie.200905229.
5
Multifunctional superparamagnetic Janus particles.
Langmuir. 2010 Mar 16;26(6):4281-7. doi: 10.1021/la903348s.
6
Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow.
Lab Chip. 2009 Nov 7;9(21):3110-7. doi: 10.1039/b904724g. Epub 2009 Aug 21.
7
High-throughput flow alignment of barcoded hydrogel microparticles.
Lab Chip. 2009 Nov 7;9(21):3100-9. doi: 10.1039/b909959j. Epub 2009 Aug 11.
8
On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force.
Lab Chip. 2009 Oct 21;9(20):2992-9. doi: 10.1039/b906229g. Epub 2009 Jul 9.
9
Optimization of encoded hydrogel particles for nucleic acid quantification.
Anal Chem. 2009 Jun 15;81(12):4873-81. doi: 10.1021/ac9005292.
10
Lock release lithography for 3D and composite microparticles.
Lab Chip. 2009 Apr 7;9(7):863-6. doi: 10.1039/b821930c. Epub 2009 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验