Colonization and infection of the human host by staphylococci: adhesion, survival and immune evasion.

作者信息

Foster Timothy J

机构信息

Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland.

出版信息

Vet Dermatol. 2009 Oct;20(5-6):456-70. doi: 10.1111/j.1365-3164.2009.00825.x.

Abstract

The natural habitat of Staphylococcus aureus in humans is the moist squamous epithelium of the anterior nares. Several bacterial surface proteins are implicated in promoting adhesion to desquamated epithelial cells. Clumping factor B (ClfB) and iron-regulated surface determinant A both promote nasal colonization in rodent models, and in the case of ClfB, humans. One of the ligands involved in adhesion is cytokeratin 10. Reduction in nasal colonization can be achieved by active and passive immunization. S. aureus is well endowed with secreted and surface components that compromise innate immune responses, particularly the function of neutrophils. S. aureus secretes proteins that reduce migration of neutrophils from the bloodstream to the site of infection by impeding diapedesis and receptors for chemotactic molecules. Several secreted proteins interfere with complement C3 and C5 convertases, thus reducing the level of C3b opsonin and the chemotactic peptide C5a. Host proteases are recruited to the cell surface to enhance destruction of opsonic C3b and IgG. Surface components ClfA, protein A and polysaccharide capsule compromise the recognition of opsonins on the bacterial cell surface. If engulfed by neutrophils the intracellular bacterium can resist reactive oxygen intermediates, nitric oxide radicals, defensin peptides and bactericidal proteins. A prior infection by S. aureus does not induce complete protective immunity. This could be due to immunosuppression caused by expression of superantigen proteins that disrupt normal activation of T cells and B cells during antigen presentation. By studying the molecular pathogenesis of S. aureus infections markers might be found for investigating S. pseudintermedius infections of dogs.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索