Suppr超能文献

一种用于超声分子成像的敏感 TLRH 靶向成像技术。

A sensitive TLRH targeted imaging technique for ultrasonic molecular imaging.

机构信息

Department of Biomedical Engineering, University of California, Davis, CA, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57(2):305-16. doi: 10.1109/TUFFC.2010.1411.

Abstract

The primary goals of ultrasound molecular imaging are the detection and imaging of ultrasound contrast agents (microbubbles), which are bound to specific vascular surface receptors. Imaging methods that can sensitively and selectively detect and distinguish bound microbubbles from freely circulating microbubbles (free microbubbles) and surrounding tissue are critically important for the practical application of ultrasound contrast molecular imaging. Microbubbles excited by low-frequency acoustic pulses emit wide-band echoes with a bandwidth extending beyond 20 MHz; we refer to this technique as transmission at a low frequency and reception at a high frequency (TLRH). Using this wideband, transient echo, we have developed and implemented a targeted imaging technique incorporating a multifrequency colinear array and the Siemens Antares imaging system. The multifrequency colinear array integrates a center 5.4-MHz array, used to receive echoes and produce radiation force, and 2 outer 1.5-MHz arrays used to transmit low-frequency incident pulses. The targeted imaging technique makes use of an acoustic radiation force subsequence to enhance accumulation and a TLRH imaging subsequence to detect bound microbubbles. The radiofrequency (RF) data obtained from the TLRH imaging subsequence are processed to separate echo signatures between tissue, free microbubbles, and bound microbubbles. By imaging biotin-coated microbubbles targeted to avidin-coated cellulose tubes, we demonstrate that the proposed method has a high contrast-to-tissue ratio (up to 34 dB) and a high sensitivity to bound microbubbles (with the ratio of echoes from bound microbubbles versus free microbubbles extending up to 23 dB). The effects of the imaging pulse acoustic pressure, the radiation force subsequence, and the use of various slow-time filters on the targeted imaging quality are studied. The TLRH targeted imaging method is demonstrated in this study to provide sensitive and selective detection of bound microbubbles for ultrasound molecularly targeted imaging.

摘要

超声分子成像的主要目标是检测和成像超声造影剂(微泡),这些微泡与特定的血管表面受体结合。能够敏感且选择性地检测和区分结合的微泡与游离循环的微泡(游离微泡)以及周围组织的成像方法对于超声对比分子成像的实际应用至关重要。用低频声脉冲激发的微泡会发出带宽超过 20MHz 的宽带回波;我们将这种技术称为低频发射和高频接收(TLRH)。利用这种宽带瞬态回波,我们开发并实现了一种结合多频共线阵和西门子 Antares 成像系统的靶向成像技术。多频共线阵集成了一个中心 5.4MHz 的阵元,用于接收回波并产生辐射力,以及两个外部的 1.5MHz 阵元,用于发射低频入射脉冲。靶向成像技术利用声辐射力序列来增强聚集,以及 TLRH 成像序列来检测结合的微泡。从 TLRH 成像序列获得的射频(RF)数据被处理以分离组织、游离微泡和结合微泡之间的回波特征。通过对靶向到亲和素涂层纤维素管的生物素涂层微泡进行成像,我们证明了所提出的方法具有高的组织对比比(高达 34dB)和对结合微泡的高灵敏度(结合微泡的回波与游离微泡的回波之比高达 23dB)。研究了成像脉冲声压、辐射力序列以及使用各种慢时滤波器对靶向成像质量的影响。本研究证明了 TLRH 靶向成像方法可用于敏感和选择性地检测超声分子靶向成像中的结合微泡。

相似文献

1
A sensitive TLRH targeted imaging technique for ultrasonic molecular imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57(2):305-16. doi: 10.1109/TUFFC.2010.1411.
2
A sensitive ultrasonic imaging method for targeted contrast microbubble detection.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5290-3. doi: 10.1109/IEMBS.2008.4650408.
3
Selective imaging of adherent targeted ultrasound contrast agents.
Phys Med Biol. 2007 Apr 21;52(8):2055-72. doi: 10.1088/0031-9155/52/8/002. Epub 2007 Mar 20.
4
Radiation-force assisted targeting facilitates ultrasonic molecular imaging.
Mol Imaging. 2004 Jul;3(3):135-48. doi: 10.1162/15353500200404115.
7
In vivo validation and 3D visualization of broadband ultrasound molecular imaging.
Am J Nucl Med Mol Imaging. 2013 Jul 10;3(4):336-49. Print 2013.
8
Acoustic characterization of contrast-to-tissue ratio and axial resolution for dual-frequency contrast-specific acoustic angiography imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Oct;61(10):1668-87. doi: 10.1109/TUFFC.2014.006466.
9
Phase shift variance imaging - a new technique for destructive microbubble imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 May;60(5):909-23. doi: 10.1109/TUFFC.2013.2648.
10
A new imaging strategy using wideband transient response of ultrasound contrast agents.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Aug;52(8):1320-9. doi: 10.1109/tuffc.2005.1509790.

引用本文的文献

1
Superharmonic and Microultrasound Imaging With Plane Wave Beamforming Techniques.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Nov;70(11):1442-1456. doi: 10.1109/TUFFC.2023.3316120. Epub 2023 Nov 1.
2
A Handheld Imaging Probe for Acoustic Angiography With an Ultrawideband Capacitive Micromachined Ultrasonic Transducer (CMUT) Array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Jul;69(7):2318-2330. doi: 10.1109/TUFFC.2022.3172566. Epub 2022 Jun 30.
3
Characterization of an Array-Based Dual-Frequency Transducer for Superharmonic Contrast Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2419-2431. doi: 10.1109/TUFFC.2021.3065952. Epub 2021 Jun 29.
4
In Vitro Superharmonic Contrast Imaging Using a Hybrid Dual-Frequency Probe.
Ultrasound Med Biol. 2019 Sep;45(9):2525-2539. doi: 10.1016/j.ultrasmedbio.2019.05.012. Epub 2019 Jun 11.
5
Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles.
Phys Med Biol. 2018 Mar 15;63(6):065009. doi: 10.1088/1361-6560/aab05c.
6
Targeting of microbubbles: contrast agents for ultrasound molecular imaging.
J Drug Target. 2018 Jun-Jul;26(5-6):420-434. doi: 10.1080/1061186X.2017.1419362. Epub 2018 Jan 9.
7
Dual-Frequency Piezoelectric Endoscopic Transducer for Imaging Vascular Invasion in Pancreatic Cancer.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jul;64(7):1078-1086. doi: 10.1109/TUFFC.2017.2702010. Epub 2017 May 8.
8
Pipe Phantoms With Applications in Molecular Imaging and System Characterization.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jan;64(1):39-52. doi: 10.1109/TUFFC.2016.2626465. Epub 2016 Nov 9.
10
Molecular Acoustic Angiography: A New Technique for High-resolution Superharmonic Ultrasound Molecular Imaging.
Ultrasound Med Biol. 2016 Mar;42(3):769-81. doi: 10.1016/j.ultrasmedbio.2015.10.015. Epub 2015 Dec 8.

本文引用的文献

1
Dynamic microPET imaging of ultrasound contrast agents and lipid delivery.
J Control Release. 2008 Nov 12;131(3):160-6. doi: 10.1016/j.jconrel.2008.07.030. Epub 2008 Jul 29.
2
Efficient array design for sonotherapy.
Phys Med Biol. 2008 Jul 21;53(14):3943-69. doi: 10.1088/0031-9155/53/14/014. Epub 2008 Jun 30.
3
Selective imaging of adherent targeted ultrasound contrast agents.
Phys Med Biol. 2007 Apr 21;52(8):2055-72. doi: 10.1088/0031-9155/52/8/002. Epub 2007 Mar 20.
4
Contrast imaging with chirped excitation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Mar;54(3):520-9. doi: 10.1109/tuffc.2007.275.
5
Effect of microbubble ligation to cells on ultrasound signal enhancement: implications for targeted imaging.
Invest Radiol. 2006 Oct;41(10):721-8. doi: 10.1097/01.rli.0000236825.72344.a9.
6
Predicting backscatter characteristics from micron- and submicron-scale ultrasound contrast agents using a size-integration technique.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Mar;53(3):639-44. doi: 10.1109/tuffc.2006.1610573.
7
Ultrasonic contrast agent shell rupture detected by inertial cavitation and rebound signals.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Jan;53(1):126-36. doi: 10.1109/tuffc.2006.1588398.
8
Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Nov;52(11):1992-2002. doi: 10.1109/tuffc.2005.1561668.
9
A new imaging strategy using wideband transient response of ultrasound contrast agents.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Aug;52(8):1320-9. doi: 10.1109/tuffc.2005.1509790.
10
Assessment of endogenous and therapeutic arteriogenesis by contrast ultrasound molecular imaging of integrin expression.
Circulation. 2005 Jun 21;111(24):3248-54. doi: 10.1161/CIRCULATIONAHA.104.481515. Epub 2005 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验