Suppr超能文献

PI3 激酶组药物筛选:从化学工具到临床药物。

Drugging the PI3 kinome: from chemical tools to drugs in the clinic.

机构信息

Cancer Research UK Centre for Cancer Therapeutics, Section of Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, United Kingdom.

出版信息

Cancer Res. 2010 Mar 15;70(6):2146-57. doi: 10.1158/0008-5472.CAN-09-4355. Epub 2010 Feb 23.

Abstract

The phosphatidylinositide 3-kinase (PI3K) pathway is very commonly activated in a wide range of human cancers and is a major driving force in oncogenesis. One of the class I lipid kinase members of the PI3K family, p110alpha, is probably the most commonly mutated kinase in the human genome. Alongside genetic, molecular biological, and biochemical studies, chemical inhibitors have been extremely helpful tools in understanding the role of PI3K enzymes in signal transduction and downstream physiological and pathological processes, and also in validating PI3Ks as therapeutic targets. Although they have been valuable in the past, the early and still frequently employed inhibitors, wortmannin and LY294002, have significant limitations as chemical tools. Here, we discuss the case history of the discovery and properties of an increasingly used chemical probe, the pan-class I PI3K and mammalian target of rapamycin (mTOR) inhibitor PI-103 (a pyridofuropyrimidine), and its very recent evolution into the thienopyrimidine drug GDC-0941, which exhibits excellent oral anticancer activity in preclinical models and is now undergoing phase I clinical trials in cancer patients. We also illustrate the impact of structural biology on the design of PI3K inhibitors and on the interpretation of their effects. The challenges and outlook for drugging the PI3 kinome are discussed in the more general context of the role of structural biology and chemical biology in innovative drug discovery.

摘要

磷脂酰肌醇 3-激酶(PI3K)途径在广泛的人类癌症中非常常见,是致癌的主要驱动力。PI3K 家族的 I 类脂质激酶成员之一 p110alpha,可能是人类基因组中最常见的突变激酶。除了遗传、分子生物学和生化研究外,化学抑制剂在理解 PI3K 酶在信号转导和下游生理及病理过程中的作用方面,以及在验证 PI3K 作为治疗靶点方面,都是非常有用的工具。尽管它们在过去很有价值,但早期和仍然经常使用的抑制剂wortmannin 和 LY294002 作为化学工具存在显著的局限性。在这里,我们讨论了越来越多使用的化学探针——pan-class I PI3K 和哺乳动物雷帕霉素靶蛋白(mTOR)抑制剂 PI-103(一种嘧啶呋喃嘧啶)的发现和特性的案例历史,以及其最近演变成噻吩嘧啶药物 GDC-0941 的情况,该药物在临床前模型中表现出优异的抗癌活性,目前正在癌症患者中进行 I 期临床试验。我们还说明了结构生物学对 PI3K 抑制剂设计的影响及其对其作用的解释。在结构生物学和化学生物学在创新药物发现中的作用的更广泛背景下,讨论了对 PI3 激酶组进行药物治疗的挑战和前景。

相似文献

1
Drugging the PI3 kinome: from chemical tools to drugs in the clinic.PI3 激酶组药物筛选:从化学工具到临床药物。
Cancer Res. 2010 Mar 15;70(6):2146-57. doi: 10.1158/0008-5472.CAN-09-4355. Epub 2010 Feb 23.

引用本文的文献

6
Cryo-EM structures of cancer-specific helical and kinase domain mutations of PI3Kα.PI3Kα 癌特异性螺旋和激酶结构域突变的冷冻电镜结构。
Proc Natl Acad Sci U S A. 2022 Nov 16;119(46):e2215621119. doi: 10.1073/pnas.2215621119. Epub 2022 Nov 7.

本文引用的文献

7
Perfecting probes.完善探针。
Nat Chem Biol. 2009 Jul;5(7):435. doi: 10.1038/nchembio0709-435.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验