Suppr超能文献

circadian entrainment to light-dark cycles involves extracellular nitric oxide communication within the suprachiasmatic nuclei.

Circadian entrainment to light-dark cycles involves extracellular nitric oxide communication within the suprachiasmatic nuclei.

机构信息

Department of Science and Technology, Laboratory of Chronobiology, National University of Quilmes/CONICET, Buenos Aires, Argentina.

出版信息

Eur J Neurosci. 2010 Mar;31(5):876-82. doi: 10.1111/j.1460-9568.2010.07120.x. Epub 2010 Feb 17.

Abstract

The ability to synchronize to light-dark (LD) cycles is an essential property of the circadian clock, located in mammals within the hypothalamic suprachiasmatic nuclei (SCN). Single light pulses activate nitric oxide (NO) intracellular signaling, leading to circadian phase-shifts required for synchronization. In addition, extracellular NO has a role in the SCN paracrine communication of photic phase advances. In this work, the extracellular nitrergic transmission was assessed in steady-state synchronization to LD cycles of locomotor rhythms in the golden hamster (Mesocricetus auratus). Extracellular NO levels were pharmacologically decreased in vivo with the specific scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO). Hamsters were subjected to LD cycles different from normal 24 h (LD 14 : 10) cycles (i.e. T-cycles), with a single 30-min light pulse presented either every 23 h (T23 cycles), or every 25 h (T25 cycles), thus allowing synchronization by advances or delays, respectively. Acute PTIO intracerebroventricular microinjections, delivered 30 min previous to the light pulse, inhibited synchronization by phase advances to T23 cycles, but did not alter phase delays under T25 cycles. In addition, NO scavenging inhibited light-induced expression of PERIOD1 protein at circadian time 18 (i.e. the time for light-induced phase advances). These findings demonstrate the role of extracellular NO communication within the SCN in the steady-state synchronization to LD cycles.

摘要

同步光-暗(LD)周期是生物钟的一个基本特性,位于哺乳动物下丘脑视交叉上核(SCN)内。单个光脉冲激活一氧化氮(NO)细胞内信号转导,导致同步所需的昼夜节律相位移动。此外,细胞外 NO 在 SCN 旁分泌传递光相前进中起作用。在这项工作中,在金黄地鼠(Mesocricetus auratus)的运动节律的 LD 周期稳态同步中评估了细胞外 nitrergic 传递。通过特异性清除剂 2-苯基-4,4,5,5-四甲基咪唑啉-1-氧 3-氧化物(PTIO)在体内降低细胞外 NO 水平。金黄地鼠接受与正常 24 小时(LD 14:10)周期不同的 LD 周期(即 T 周期),每隔 23 小时(T23 周期)或每隔 25 小时(T25 周期)呈现一个 30 分钟的光脉冲,从而分别通过前进或延迟进行同步。急性 PTIO 脑室内微注射在光脉冲前 30 分钟给予,抑制了向 T23 周期的相位前进同步,但在 T25 周期下不改变相位延迟。此外,NO 清除抑制了在生物钟时间 18 时(即光诱导相位前进的时间)光诱导 PERIOD1 蛋白的表达。这些发现表明,细胞外 NO 通讯在 SCN 中在 LD 周期的稳态同步中起作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验