Suppr超能文献

肝细胞瘤形成的分子遗传学

Molecular genetics of hepatocellular neoplasia.

作者信息

Jain Shilpa, Singhal Shashideep, Lee Peng, Xu Ruliang

出版信息

Am J Transl Res. 2010 Jan 23;2(1):105-18.

Abstract

Hepatocellular carcinoma (HCC) is the sixth most common malignancy and the third leading cause of cancer deaths worldwide. Proper classification and early identification of HCC and precursor lesions is essential to the successful treatment and survival of HCC patients. Recent molecular genetic, pathologic, and clinical data have led to the stratification of hepatic adenomas into three subgroups: those with mutant TCF1/HNF1 alpha gene, those with mutant beta-catenin, and those without mutations in either of these loci. Hepatic adenomas with alpha-catenin mutations have a significantly greater risk for malignant transformation in comparison with the other two subgroups. Telangiectatic focal nodular hyperplasia has now been reclassified as telangiectatic adenoma due to the presence of non-random methylation patterns, consistent with the monoclonal origin which is similar to hepatic adenoma and HCC. HCC precursor lesions demonstrate unique molecular alterations of HSP70, CAP2, glypican 3, and glutamine synthetase that have proven useful in the histologic diagnosis of early HCC. Though specific genetic alterations depend on HCC etiology, the main proteins affected include cell membrane receptors (in particular tyrosine kinase receptors) as well as proteins involved in cell signaling (specifically Wnt/beta-catenin, Ras/Raf/MEK/ERK and PI3K/Akt/mTOR pathways), cell cycle regulation (i.e. p53, p16/INK4, cyclin/cdk complex), invasiveness (EMT, TGF-beta) and DNA metabolism. Advances in gene expression profiling have provided new insights into the molecular genetics of HCC. HCCs can now be stratified into two clinically relevant groups: Class A, the low survival subclass (overall survival time 30.3+/- 8.02 months), shows strong expression signatures of cell proliferation and antiapoptosis genes (such as PNCA and cell cycle regulators CDK4, CCNB1, CCNA2, and CKS2) as well as genes involving ubiquitination and sumoylation; Class B, the high survival subclass (overall survival time 83.7 +/-10.3 months), does not have the above expression signature. In fact, insights into HCC-specific alterations of signal transduction pathways and protein expression patterns have led to the development of new therapeutic agents with molecular targets such as EGFR, VEGF, or other multi-kinase inhibitors. In the future, these specific molecular alterations in HCC can potentially serve as diagnostic tools, prognostic markers, and/or therapeutic targets with the potential to alter clinical outcomes.

摘要

肝细胞癌(HCC)是全球第六大常见恶性肿瘤,也是癌症死亡的第三大主要原因。对HCC及其前驱病变进行恰当分类和早期识别对于HCC患者的成功治疗和生存至关重要。最近的分子遗传学、病理学和临床数据已将肝腺瘤分为三个亚组:具有TCF1/HNF1α基因突变的亚组、具有β-连环蛋白突变的亚组以及这两个基因座均无突变的亚组。与其他两个亚组相比,具有α-连环蛋白突变的肝腺瘤发生恶性转化的风险显著更高。由于存在非随机甲基化模式,现在已将毛细血管扩张性局灶性结节性增生重新分类为毛细血管扩张性腺瘤,这与肝腺瘤和HCC相似的单克隆起源一致。HCC前驱病变表现出HSP70、CAP2、磷脂酰肌醇蛋白聚糖3和谷氨酰胺合成酶的独特分子改变,这些改变已被证明对早期HCC的组织学诊断有用。尽管特定的基因改变取决于HCC的病因,但受影响的主要蛋白质包括细胞膜受体(特别是酪氨酸激酶受体)以及参与细胞信号传导的蛋白质(特别是Wnt/β-连环蛋白、Ras/Raf/MEK/ERK和PI3K/Akt/mTOR途径)、细胞周期调节(即p53、p16/INK4、细胞周期蛋白/细胞周期蛋白依赖性激酶复合物)、侵袭性(上皮-间质转化、转化生长因子-β)和DNA代谢。基因表达谱分析的进展为HCC的分子遗传学提供了新的见解。现在HCC可分为两个临床相关组:A类为低生存亚组(总生存时间30.3±8.02个月),表现出细胞增殖和抗凋亡基因(如增殖细胞核抗原和细胞周期调节因子CDK4、CCNB1、CCNA2和CKS2)以及涉及泛素化和类泛素化的基因的强表达特征;B类为高生存亚组(总生存时间83.7±10.3个月),不具有上述表达特征。事实上,对HCC信号转导途径和蛋白质表达模式的特异性改变的深入了解已导致开发出具有分子靶点(如表皮生长因子受体、血管内皮生长因子或其他多激酶抑制剂)的新型治疗药物。未来,HCC中的这些特定分子改变有可能作为诊断工具、预后标志物和/或治疗靶点,具有改变临床结局的潜力。

相似文献

1
Molecular genetics of hepatocellular neoplasia.
Am J Transl Res. 2010 Jan 23;2(1):105-18.
2
Molecular pathways and related target therapies in liver carcinoma.
Curr Pharm Des. 2007;13(32):3279-87. doi: 10.2174/138161207782360663.
5
Gene methylation in gastric cancer.
Clin Chim Acta. 2013 Sep 23;424:53-65. doi: 10.1016/j.cca.2013.05.002. Epub 2013 May 10.
6
AXIN deficiency in human and mouse hepatocytes induces hepatocellular carcinoma in the absence of β-catenin activation.
J Hepatol. 2018 Jun;68(6):1203-1213. doi: 10.1016/j.jhep.2017.12.018. Epub 2018 Mar 7.
8
Modeling a human hepatocellular carcinoma subset in mice through coexpression of met and point-mutant β-catenin.
Hepatology. 2016 Nov;64(5):1587-1605. doi: 10.1002/hep.28601. Epub 2016 May 28.
9
Targeting β-catenin in hepatocellular cancers induced by coexpression of mutant β-catenin and K-Ras in mice.
Hepatology. 2017 May;65(5):1581-1599. doi: 10.1002/hep.28975. Epub 2017 Feb 6.
10
Recent developments in liver pathology.
Arch Pathol Lab Med. 2009 Jul;133(7):1078-86. doi: 10.5858/133.7.1078.

引用本文的文献

3
Decreased expression of ZO-1 is associated with tumor metastases in liver cancer.
Oncol Lett. 2019 Feb;17(2):1859-1864. doi: 10.3892/ol.2018.9765. Epub 2018 Nov 27.
7
The potential of cell sheet technique on the development of hepatocellular carcinoma in rat models.
PLoS One. 2017 Aug 29;12(8):e0184004. doi: 10.1371/journal.pone.0184004. eCollection 2017.
8
Liver carcinogenesis by FOS-dependent inflammation and cholesterol dysregulation.
J Exp Med. 2017 May 1;214(5):1387-1409. doi: 10.1084/jem.20160935. Epub 2017 Mar 29.
9
MiR-15a suppresses hepatocarcinoma cell migration and invasion by directly targeting .
Am J Transl Res. 2017 Feb 15;9(2):520-532. eCollection 2017.

本文引用的文献

2
Molecular targets for liver cancer therapy: From screening of target genes to clinical trials.
Hepatol Res. 2010 Jan 1;40(1):49-60. doi: 10.1111/j.1872-034X.2009.00583.x. Epub 2009 Sep 25.
3
Clonality and allelotype analyses of focal nodular hyperplasia compared with hepatocellular adenoma and carcinoma.
World J Gastroenterol. 2009 Oct 7;15(37):4695-708. doi: 10.3748/wjg.15.4695.
5
MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality.
Clin Cancer Res. 2009 Aug 15;15(16):5073-81. doi: 10.1158/1078-0432.CCR-09-0092. Epub 2009 Aug 11.
6
Safety and efficacy of sunitinib in patients with advanced hepatocellular carcinoma: an open-label, multicentre, phase II study.
Lancet Oncol. 2009 Aug;10(8):794-800. doi: 10.1016/S1470-2045(09)70171-8. Epub 2009 Jul 6.
7
Molecular targeted therapy for hepatocellular carcinoma.
J Gastroenterol. 2009;44 Suppl 19:136-41. doi: 10.1007/s00535-008-2252-z. Epub 2009 Jan 16.
8
MicroRNA involvement in hepatocellular carcinoma.
J Cell Mol Med. 2008 Dec;12(6A):2189-204. doi: 10.1111/j.1582-4934.2008.00533.x.
9
Molecular mechanisms of hepatocellular carcinoma.
Hepatology. 2008 Dec;48(6):2047-63. doi: 10.1002/hep.22580.
10
Gene expression in fixed tissues and outcome in hepatocellular carcinoma.
N Engl J Med. 2008 Nov 6;359(19):1995-2004. doi: 10.1056/NEJMoa0804525. Epub 2008 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验