Southworth H, O'Connell M
Astra Zeneca.
J Biopharm Stat. 2009 Sep;19(5):803-17. doi: 10.1080/10543400903105232.
Some approaches to the analysis of adverse event data arising from clinical trials are presented. These include (a) an inside-out data mining method where the adverse events are used as explanatory variables, classifying the treatment allocation, (b) a support method where we fit separate regression models to each adverse event with and without a treatment effect, and (c) a three-level hierarchical Bayesian mixture model for analysis of adverse event counts. The problem of understanding treatment-emergence of the adverse events is formulated as one of data mining rather than hypothesis testing. Our approaches provide an ordering of the adverse events by the strength of evidence of a treatment effect, rather than p values for prespecified hypotheses. The three methods produce intuitive graphical summaries showing the treatment effect on adverse event incidence. These graphs can be readily linked to relevant supportive information such as reports summarizing predicted risks for (demographic) subpopulations of interest and patient-level data such as laboratory information, concomitant medications, and medical history. This results in a statistically guided and thorough review of drug safety in the clinical trial.
介绍了一些分析临床试验中不良事件数据的方法。这些方法包括:(a) 一种由内而外的数据挖掘方法,即将不良事件用作解释变量,对治疗分配进行分类;(b) 一种支持方法,即分别对有和没有治疗效果的每种不良事件拟合单独的回归模型;以及 (c) 一种用于分析不良事件计数的三级分层贝叶斯混合模型。理解不良事件的治疗相关性问题被表述为一个数据挖掘问题,而非假设检验问题。我们的方法通过治疗效果证据的强度对不良事件进行排序,而不是通过预先设定假设的p值。这三种方法生成直观的图形汇总,展示治疗对不良事件发生率的影响。这些图形可以很容易地与相关支持信息相链接,比如总结感兴趣的(人口统计学)亚组预测风险的报告以及患者层面的数据,如实验室信息、合并用药和病史。这使得在临床试验中对药物安全性进行有统计学指导的全面审查成为可能。