Suppr超能文献

饲养环境会影响新生儿免疫系统的发育。

Rearing environment affects development of the immune system in neonates.

机构信息

Divisions of Veterinary Pathology, Infection and Immunity, School of Clinical Veterinary Science, University of Bristol, Langford House, Langford, UK.

出版信息

Clin Exp Immunol. 2010 Jun;160(3):431-9. doi: 10.1111/j.1365-2249.2010.04090.x. Epub 2010 Feb 22.

Abstract

Early-life exposure to appropriate microbial flora drives expansion and development of an efficient immune system. Aberrant development results in increased likelihood of allergic disease or increased susceptibility to infection. Thus, factors affecting microbial colonization may also affect the direction of immune responses in later life. There is a need for a manipulable animal model of environmental influences on the development of microbiota and the immune system during early life. We assessed the effects of rearing under low- (farm, sow) and high-hygiene (isolator, milk formula) conditions on intestinal microbiota and immune development in neonatal piglets, because they can be removed from the mother in the first 24 h for rearing under controlled conditions and, due to placental structure, neither antibody nor antigen is transferred in utero. Microbiota in both groups was similar between 2 and 5 days. However, by 12-28 days, piglets reared on the mother had more diverse flora than siblings reared in isolators. Dendritic cells accumulated in the intestinal mucosa in both groups, but more rapidly in isolator piglets. Importantly, the minority of 2-5-day-old farm piglets whose microbiota resembled that of an older (12-28-day-old) pig also accumulated dendritic cells earlier than the other farm-reared piglets. Consistent with dendritic cell control of T cell function, the effects on T cells occurred at later time-points, and mucosal T cells from high-hygiene, isolator pigs made less interleukin (IL)-4 while systemic T cells made more IL-2. Neonatal piglets may be a valuable model for studies of the effects of interaction between microbiota and immune development on allergy.

摘要

生命早期接触适当的微生物菌群会促进高效免疫系统的扩张和发育。异常发育会增加过敏疾病的可能性或增加感染的易感性。因此,影响微生物定殖的因素也可能影响生命后期免疫反应的方向。需要一种可操作的动物模型,以研究环境对生命早期微生物群和免疫系统发育的影响。我们评估了在低卫生条件(农场、母猪)和高卫生条件(隔离器、配方奶)下饲养对新生仔猪肠道微生物群和免疫发育的影响,因为它们可以在出生后 24 小时内从母亲身上取出,在受控条件下进行饲养,并且由于胎盘结构,胎内既不转移抗体也不转移抗原。两组仔猪的肠道菌群在 2 至 5 天之间相似。然而,到 12-28 天时,在隔离器中饲养的仔猪的菌群比在隔离器中饲养的仔猪的菌群更为多样化。两组仔猪的肠黏膜中均有树突状细胞积累,但在隔离器仔猪中积累速度更快。重要的是,少数 2-5 日龄的农场仔猪的菌群与较年长(12-28 日龄)仔猪的菌群相似,其树突状细胞的积累也早于其他在农场饲养的仔猪。与树突状细胞控制 T 细胞功能一致,对 T 细胞的影响发生在稍后的时间点,来自高卫生、隔离器仔猪的黏膜 T 细胞产生的白细胞介素(IL)-4 较少,而全身 T 细胞产生的 IL-2 较多。新生仔猪可能是研究微生物群与免疫发育相互作用对过敏影响的有价值模型。

相似文献

1
Rearing environment affects development of the immune system in neonates.
Clin Exp Immunol. 2010 Jun;160(3):431-9. doi: 10.1111/j.1365-2249.2010.04090.x. Epub 2010 Feb 22.
2
Direct experimental evidence that early-life farm environment influences regulation of immune responses.
Pediatr Allergy Immunol. 2012 May;23(3):265-9. doi: 10.1111/j.1399-3038.2011.01258.x. Epub 2012 Feb 2.
5
Early-life environmental variation affects intestinal microbiota and immune development in new-born piglets.
PLoS One. 2014 Jun 18;9(6):e100040. doi: 10.1371/journal.pone.0100040. eCollection 2014.
8
Regulation of mucosal immune responses in effector sites.
Proc Nutr Soc. 2001 Nov;60(4):427-35. doi: 10.1079/pns2001118.
9
Establishment of normal gut microbiota is compromised under excessive hygiene conditions.
PLoS One. 2011;6(12):e28284. doi: 10.1371/journal.pone.0028284. Epub 2011 Dec 2.

引用本文的文献

1
From mother to piglet: the lasting influence of the maternal microbiome.
Anim Microbiome. 2025 May 26;7(1):52. doi: 10.1186/s42523-025-00420-0.
2
Probiotics in piglet: from gut health to pathogen defense mechanisms.
Front Immunol. 2024 Nov 4;15:1468873. doi: 10.3389/fimmu.2024.1468873. eCollection 2024.
3
Conjoint analysis of transcriptome and metabolome profiles of normal captivity and arch soil free-range in Meishan pigs.
Front Vet Sci. 2023 Jul 27;10:1187877. doi: 10.3389/fvets.2023.1187877. eCollection 2023.
7
The Game for Three: -Host-Microbiota Interaction Models.
Front Microbiol. 2022 Apr 18;13:854112. doi: 10.3389/fmicb.2022.854112. eCollection 2022.
8
The Power of Microbiome Studies: Some Considerations on Which Alpha and Beta Metrics to Use and How to Report Results.
Front Microbiol. 2022 Mar 3;12:796025. doi: 10.3389/fmicb.2021.796025. eCollection 2021.
9
Bovine Immunology: Implications for Dairy Cattle.
Front Immunol. 2021 Jun 29;12:643206. doi: 10.3389/fimmu.2021.643206. eCollection 2021.

本文引用的文献

3
4
Suppression of airway inflammation by a natural acute infection of the intestinal epithelium.
Mucosal Immunol. 2009 Mar;2(2):144-55. doi: 10.1038/mi.2008.83. Epub 2008 Dec 24.
5
Clinical transplantation of a tissue-engineered airway.
Lancet. 2008 Dec 13;372(9655):2023-30. doi: 10.1016/S0140-6736(08)61598-6. Epub 2008 Nov 18.
6
Anatomical particularities of the porcine immune system--a physician's view.
Dev Comp Immunol. 2009 Mar;33(3):267-72. doi: 10.1016/j.dci.2008.06.016. Epub 2008 Sep 5.
7
CD4 T cells: fates, functions, and faults.
Blood. 2008 Sep 1;112(5):1557-69. doi: 10.1182/blood-2008-05-078154.
9
A neonatal swine model of allergy induced by the major food allergen chicken ovomucoid (Gal d 1).
Int Arch Allergy Immunol. 2008;146(1):11-8. doi: 10.1159/000112498. Epub 2007 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验