Suppr超能文献

用于检测受选择基因组区域的群体遗传隐马尔可夫模型。

A population genetic hidden Markov model for detecting genomic regions under selection.

机构信息

Department of Biological Sciences, Dartmouth College, Hanover, NH, USA.

出版信息

Mol Biol Evol. 2010 Jul;27(7):1673-85. doi: 10.1093/molbev/msq053. Epub 2010 Feb 25.

Abstract

Recently, hidden Markov models have been applied to numerous problems in genomics. Here, we introduce an explicit population genetics hidden Markov model (popGenHMM) that uses single nucleotide polymorphism (SNP) frequency data to identify genomic regions that have experienced recent selection. Our popGenHMM assumes that SNP frequencies are emitted independently following diffusion approximation expectations but that neighboring SNP frequencies are partially correlated by selective state. We give results from the training and application of our popGenHMM to a set of early release data from the Drosophila Population Genomics Project (dpgp.org) that consists of approximately 7.8 Mb of resequencing from 32 North American Drosophila melanogaster lines. These results demonstrate the potential utility of our model, making predictions based on the site frequency spectrum (SFS) for regions of the genome that represent selected elements.

摘要

最近,隐马尔可夫模型已被应用于基因组学中的众多问题。在这里,我们引入了一个显式的群体遗传学隐马尔可夫模型(popGenHMM),该模型使用单核苷酸多态性(SNP)频率数据来识别经历过近期选择的基因组区域。我们的 popGenHMM 假设 SNP 频率是根据扩散逼近期望独立发出的,但相邻 SNP 频率通过选择状态部分相关。我们给出了从训练和应用我们的 popGenHMM 到一组来自果蝇群体基因组计划(dpgp.org)的早期发布数据的结果,这些数据包括来自 32 个北美果蝇品系的大约 7.8 Mb 的重测序。这些结果证明了我们的模型的潜在用途,它基于基因组中代表选择元素的区域的位点频率谱(SFS)进行预测。

相似文献

5
Genomics of Parallel Experimental Evolution in Drosophila.果蝇平行实验进化的基因组学
Mol Biol Evol. 2017 Apr 1;34(4):831-842. doi: 10.1093/molbev/msw282.
9
Learning natural selection from the site frequency spectrum.从位点频谱中学习自然选择。
Genetics. 2013 Sep;195(1):181-93. doi: 10.1534/genetics.113.152587. Epub 2013 Jun 14.
10
Bayesian inference of selection in the Wright-Fisher diffusion model.赖特-费希尔扩散模型中选择的贝叶斯推断
Stat Appl Genet Mol Biol. 2018 Jun 6;17(3):sagmb-2017-0046. doi: 10.1515/sagmb-2017-0046.

引用本文的文献

2
Detecting Selection from Linked Sites Using an -Model.利用 - 模型从关联站点检测选择。
Genetics. 2020 Dec;216(4):1205-1215. doi: 10.1534/genetics.120.303780. Epub 2020 Oct 16.
7
Methods to detect selection on noncoding DNA.检测非编码DNA选择的方法。
Methods Mol Biol. 2012;856:141-59. doi: 10.1007/978-1-61779-585-5_6.
8
Genomics of isolation in hybrids.杂种隔离的基因组学。
Philos Trans R Soc Lond B Biol Sci. 2012 Feb 5;367(1587):439-50. doi: 10.1098/rstb.2011.0196.

本文引用的文献

6
On the inference of ancestries in admixed populations.关于混合群体中祖先的推断。
Genome Res. 2008 Apr;18(4):668-75. doi: 10.1101/gr.072751.107. Epub 2008 Mar 18.
10
Reconstructing genetic ancestry blocks in admixed individuals.重建混合个体中的遗传祖先片段。
Am J Hum Genet. 2006 Jul;79(1):1-12. doi: 10.1086/504302. Epub 2006 May 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验